Задачи граничного управления для нелинейной модели реакции-диффузии-конвекции |
Сарицкая Ж. Ю., Бризицкий Р. В. |
2023, выпуск 1, С. 106-111 DOI: https://doi.org/10.47910/FEMJ202309 |
Аннотация |
Доказана разрешимость задачи граничного управления для нелинейной модели массопереноса в случае, когда коэффициент реакции нелинейно зависит от концентрации вещества, а также зависит от пространственных переменных. Роль управления играет значение концентрации, заданное на всей границе области. |
Ключевые слова: нелинейная модель массопереноса, обобщенная модель Буссинеска, коэффициент реакции, задача граничного управления. |
Полный текст статьи (файл PDF) |
Библиографический список |
[1] K. Ito K, K. Kunish “Estimation of the convection coefficient in elliptic equations”, Inv. Probl., 14, (1997), 995–1013. [2] G. V. Alekseev, “Coefficient inverse extremum problems for stationary heat and mass transfer equations”, Comp. Math. Math. Phys., 47(6), (2007), 1007–1028. [3] G. V. Alekseev, D. A. Tereshko,, “Extremum problems of boundary control for steady equations of thermal convection”, J. Appl. Mech. Tech. Phys., 51(4), (2010), 510–520. [4] G. V. Alekseev, R. V. Brizitskii, Zh. Yu. Saritskaya, “Stability estimates of solutions to extreme problems for the nonlinear convection-diffusion-reaction equation”, Sib. J. Industr. Math., 19:2, (2016), 3–16. [5] R. V. Brizitskii, Zh. Yu. Saritskaya, “Boundary control problem for the nonlinear convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 58:12, (2018), 2139–2152. [6] A. Yu. Chebotarev, A. E. Kovtanyuk, G. V. Grenkin, N. D. Botkin, K.-H. Hoffmann, “Non-degeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comp., 289, (2016), 371–380. [7] A. Y. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM: Math. Model. and Num. Anal., 51:6, (2017), 2511–2519. [8] R. V. Brizitskii, Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, Inverse Ill-Posed Probl., 26:6, (2018), 821-833. [9] R. V. Brizitskii, Zh. Yu. Saritskaia, “Multiplicative control problems for nonlinear reaction-diffusion-convection model”, J. Dyn. Control Systems., 27:2, (2021), 379–402. [10] E.S. Baranovskii, “Optimal boundary control of the Boussinesq approximation for polymeric fluids”, J. Optim. Theory and Appl., 189, (2021), 623–645. [11] G. V. Alekseev, V. G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, J. Appl. Industr. Math., 6 (1), (2012), 1–5. [12] Zh.Yu. Saritskaia, “Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition”, Sib. El. Math. Rep., 19:1, (2022), 360–370. [13] S. A. Lorca, J. L. Boldrini, “Stationary solutions for generalized Boussinesq models”, J. Dif. Eq., 124, (1996), 389–406. [14] A. Bermudez, R. Munoz-Sola, R. Vazquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating”, J. Math. An. Appl., 368, (2010), 444–468. [15] M. Ruzicka, V. Shelukhin, M. M. dos Santos, “Steady flows of Cosserat-Bingham fluids”, Math. Meth. Appl. Sc., 40, (2017), 2746–2761. [16] A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-omponent viscous compressible heat-conducting fluids”, Izv. Math., 85:4, (2021), 755–812. [17] A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:9, (2019), 1–9. [18] G. V. Alekseev, “Optimization in stationary problems of heat and mass transfer and magnetic hydrodynamics.”, M.: Nauch. Mir., 2010, 412. |