Far Eastern Mathematical Journal

To content of the issue


Boundary control problems for nonlinear reaction-diffusion-convection model


Zh. Yu. Saritskaia, R. V. Brizitskii

2023, issue 1, P. 106-111
DOI: https://doi.org/10.47910/FEMJ202309


Abstract
The solvability of the boundary control problem for a nonlinear model of mass transfer is proven in the case, when the reaction coefficient depends nonlinearly on concentration of substance and depends on spatial variables. The role of the control is played by the concentration value specified on the entire boundary of the domain.

Keywords:
Nonlinear Mass-Transfer Model, Generalized Boussinesq Model, Reaction Coefficient, Boundary Control Problem.

Download the article (PDF-file)

References

[1] K. Ito K, K. Kunish “Estimation of the convection coefficient in elliptic equations”, Inv. Probl., 14, (1997), 995–1013.
[2] G. V. Alekseev, “Coefficient inverse extremum problems for stationary heat and mass transfer equations”, Comp. Math. Math. Phys., 47(6), (2007), 1007–1028.
[3] G. V. Alekseev, D. A. Tereshko,, “Extremum problems of boundary control for steady equations of thermal convection”, J. Appl. Mech. Tech. Phys., 51(4), (2010), 510–520.
[4] G. V. Alekseev, R. V. Brizitskii, Zh. Yu. Saritskaya, “Stability estimates of solutions to extreme problems for the nonlinear convection-diffusion-reaction equation”, Sib. J. Industr. Math., 19:2, (2016), 3–16.
[5] R. V. Brizitskii, Zh. Yu. Saritskaya, “Boundary control problem for the nonlinear convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 58:12, (2018), 2139–2152.
[6] A. Yu. Chebotarev, A. E. Kovtanyuk, G. V. Grenkin, N. D. Botkin, K.-H. Hoffmann, “Non-degeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comp., 289, (2016), 371–380.
[7] A. Y. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM: Math. Model. and Num. Anal., 51:6, (2017), 2511–2519.
[8] R. V. Brizitskii, Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, Inverse Ill-Posed Probl., 26:6, (2018), 821-833.
[9] R. V. Brizitskii, Zh. Yu. Saritskaia, “Multiplicative control problems for nonlinear reaction-diffusion-convection model”, J. Dyn. Control Systems., 27:2, (2021), 379–402.
[10] E.S. Baranovskii, “Optimal boundary control of the Boussinesq approximation for polymeric fluids”, J. Optim. Theory and Appl., 189, (2021), 623–645.
[11] G. V. Alekseev, V. G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, J. Appl. Industr. Math., 6 (1), (2012), 1–5.
[12] Zh.Yu. Saritskaia, “Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition”, Sib. El. Math. Rep., 19:1, (2022), 360–370.
[13] S. A. Lorca, J. L. Boldrini, “Stationary solutions for generalized Boussinesq models”, J. Dif. Eq., 124, (1996), 389–406.
[14] A. Bermudez, R. Munoz-Sola, R. Vazquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating”, J. Math. An. Appl., 368, (2010), 444–468.
[15] M. Ruzicka, V. Shelukhin, M. M. dos Santos, “Steady flows of Cosserat-Bingham fluids”, Math. Meth. Appl. Sc., 40, (2017), 2746–2761.
[16] A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-omponent viscous compressible heat-conducting fluids”, Izv. Math., 85:4, (2021), 755–812.
[17] A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:9, (2019), 1–9.
[18] G. V. Alekseev, “Optimization in stationary problems of heat and mass transfer and magnetic hydrodynamics.”, M.: Nauch. Mir., 2010, 412.

To content of the issue