Дальневосточный математический журнал

К содержанию выпуска


Разбавленная модель кубического спинового льда


В.С. Стронгин, П.А. Овчинников, Э.А. Лобанова, И.В. Трефилов, Ю.А. Шевченко

2024, выпуск 1, С. 120-132
DOI: https://doi.org/10.47910/FEMJ202411


Аннотация
Методом Метрополиса в системе Изинг-подобных точечных диполей, расположенных на ребрах простой кубической решетки, получено температурное поведение теплоемкости, намагниченности и магнитной восприимчивости в модели, учитывающей только ближние диполь-дипольные взаимодействия, а также модели с ограниченным дальним радиусом взаимодействия. В системе присутствуют три термодинамические магнитные фазы: дальний порядок, ближний порядок и беспорядок. Фаза дальнего порядка в модели ближайших соседей отсутствует. Фаза ближнего порядка характеризуется высоким уровнем энтропии, наведенной геометрией решетки. Внешнее магнитное поле вдоль одной из базисных осей приводит к конкуренции параметров порядка в модели с ограниченным дальним радиусом взаимодействия и к исчезновению остаточной энтропии в модели учитывающей только ближние взаимодействия. Показана нелинейная зависимость критической температуры теплоемкости от концентрации разбавления системы немагнитными вакансиями в модели с ближними взаимодействиями.

Ключевые слова:
кубический спиновый лед, алгоритм Метрополиса, статистическая термодинамика.

Полный текст статьи (файл PDF)

Библиографический список

[1] Skj?rv? S.H., Marrows C.H., Stamps et R.L.al., “Advances in artificial spin ice”, Nature Reviews Physics, 2, (2020), 13–28.
[2] Shevchenko Y., Makarov A., Nefedev K., “Effect of long-and short-range interactions on the thermodynamics of dipolar spin ice”, Physics Letters A, 381:5, (2017), 428–434.
[3] Morrison M.J., Nelson T.R., Nisoli C., “Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration”, New Journal of Physics, 15:4, (2013), 045009.
[4] Dasgupta S., Wang X., French KM., Villalobos E., “Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction”, Nature communications, 12:1, (2021), 1684.
[5] Sahoo S., May A., van Den Berg A., Mondal et A. K. al., “Observation of coherent spin waves in a three-dimensional artificial spin ice structure”, Nano Letters, 21:11, (2021), 4629–4635.
[6] Sahoo S., Mondal S., Williams G., May A., “Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure”, Nanoscale, 10:21, (2018), 9981–9986.
[7] Keller L., Mamoori M.Al, Pieper J., Gspan C., “Direct-write of free-form building blocks for artificial magnetic 3D lattices”, Scientific reports, 8:1, (2018), 6160.
[8] Koraltan S., Slanovc F., Bruckner F., Nisoli C., “Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice”, npj Computational Materials, 7:1, (2021), 125.
[9] Shevchenko Y., Strongin V., Kapitan V., Soldatov K., “Order and disorder, crossovers, and phase transitions in dipolar artificial spin ice on the Cairo lattice”, Physical Review E, 106:6, (2022), 064105.
[10] Капитан В.Ю., Васильев Е.В., Шевченко Ю.А., Пержу А.В., “Термодинамические свойства систем спинов Гейзенберга на квадратной решетке с взаимодействием Дзялошинского–Мория”, Дальневост. матем. журн., 20:1, (2020), 63–73 Mi http://mi.mathnet.ru/dvmg420, doi https://doi.org/10.47910/FEMJ202007.
[11] Wang R.F., Nisoli C., Freitas R.S., Li J., “Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands”, Nature, 439:7074, (2006), 303–306.
[12] Stoner E.C., Wohlfarth E.P., “A mechanism of magnetic hysteresis in heterogeneous alloys”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:826, (1948), 559-642.
[13] Metropolis N., Rosenbluth A.W., Rosenbluth et M.N. al., “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6, (1953), 1087–1092.
[14] Hastings W.K., “Monte Carlo sampling methods using Markov chains and their application”, Biometrika, 57, (1970), 97–109.
[15] Makarova K., Makarov A., Strongin et V. al., “Canonical Monte Carlo multispin cluster method”, Journal of Computational and Applied Mathematics, 427, (2023), 115153.
[16] Макарова К.В., Макаров А.Г., Падалко М.А., Стронгин В.С., “Мультиспиновый Монте-Карло метод”, Дальневост. матем. журн., 20:2, (2020), 212–220. Mi http://mi.mathnet.ru/dvmg433, doi https://doi.org/10.47910/FEMJ202020.
[17] Le Guillou J.C., Zinn-Justin J., “Critical exponents from field theory”, Physical Review B, 21:9, (1980), 3976.
[18] Vaz C.A.F., Bland J.A.C., Lauhoff G., “Magnetism in ultrathin film structures”, Reports on Progress in Physics, 71:5, (2008), 056501.
[19] Aharony A., Harris A.B., Wiseman S., “Critical disordered systems with constraints and the inequality ? > 2/d”, Phys. Rev. Lett., 81:2, (1998), 252.
[20] Marques M.I., Gonzalo J.A., “Self-averaging of random and thermally disordered diluted Ising systems”, Phys. Rev. E, 60:2, (1999), 2394.

К содержанию выпуска