Дальневосточный математический журнал

К содержанию выпуска


О задаче определения коэффициента рассеяния при частотно-модулированном зондировании среды


Ворновских П.А., Ермолаев Е.В., Прохоров И.В.

2022, выпуск 2, С. 263-268
DOI: https://doi.org/10.47910/FEMJ202237


Аннотация
В рамках кинетической модели переноса линейно-частотно-модулированного излучения в рассеивающей среде сформулирована обратная задача, заключающаяся в определении объемного коэффициента рассеяния звука. Дополнительной информацией в задаче является усредненное по частоте угловое распределение плотности потока излучения в заданной точке пространства. Получено аналитическое решение обратной задачи в приближении однократного рассеяния.

Ключевые слова:
уравнение переноса излучения, линейно-частотно-модулированное зондирование, коэффициент рассеяния, обратная задача

Полный текст статьи (файл PDF)

Библиографический список

[1] P. A. Vornovskikh, A. Kim, I. V. Prokhorov, “The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium", Computer Research and Modeling, 12:5, (2020), 1063-1079.
[2] P. A. Vornovskikh, I. V. Prokhorov, “Comparative analysis of the error of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases", Dal'nevost. Mat. Zh., 21:2, (2021), 151-165.
[3] C. S. Clay, H. Medwin, Acoustical Oceanography: Principal and Applications, John Wiley and Sons New, York, 1977.
[4] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.
[5] G. Bal, “Kinetics of scalar wave fields in random media", Wave Motion, 43, (2005), 132-157.
[6] G. Bal, “Inverse transport theory and applications", Inverse Problems, 25:5, (2009), 025019.
[7] I. V. Prokhorov, A. A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory", Acoustical Physics, 61:3, (2015), 368-375.
[8] S. Acosta, “Time reversal for radiative transport with applications to inverse and control problems", Inverse Problems, 29, (2013), 085014.
[9] I. V. Prokhorov, I.P. Yarovenko, “Determination of Refractive Indices of a Layered Medium under Pulsed Irradiation", Optics and Spectroscopy, 124:4, (2018), 567-574.
[10] M. Bellassoued, Y. Boughanja, “An inverse problem for the linear Boltzmann equation with a time-dependent coefficient", Inverse Problems, 35, (2019), 085003.
[11] W. Dahmen, F. Gruber, O. Mula, “An adaptive nested source term iteration for radiative transfer equations", Math. Comp, 89, (2020), 1605-1646. 512
[12] Q. Li, W. Sun, “Applications of kinetic tools to inverse transport problems", Inverse Problems, 36, (2020), 035011.
[13] I. V. Prokhorov, I.P. Yarovenko, “Determination of the Attenuation Coefficient for the Nonstationary Radiative Transfer Equation", Computational Mathematics and Mathematical Physics, 61:12, (2021), 2088-2101.
[14] L. Florescu, V. A. Markel, J. C. Schotland, “Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption", Phys. Rev. E., 81, (2010), 016602.
[15] A. Kleinboehl, J. T. Schofield, W. A. Abdou, P. G. J. Irwin, de R. J. Kok, “A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere", Journal of Quantitative Spectroscopy and Radiative Transfer, 112:10, (2011), 1568-1580.

К содержанию выпуска