.. , .. , .. , .. , .. , .. , .. , .. , .. , ..

2020, 1, . 6373


, . , () . .

:
, , , , , ,

( PDF)

[1] B. Heinrich, J. A. C. Bland, Ultrathin magnetic structures, II: Measurement techniques and novel magnetic properties Vol. 2, Springer Science & Business Media, 2006.
[2] V. Belokon, V. Kapitan, O. Dyachenko, The combination of the random interaction fields method and the BethePeierls method for studying two-sublattice magnets, Journal of Magnetism and Magnetic Materials, 401, (2016), 651655.
[3] V.V. Prudnikov, P.V. Prudnikov, D. E. Romanovskii, Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient, JETP letters, 102:10, (2015), 668673.
[4] Pavel V. Prudnikov, Vladimir V. Prudnikov, Maria A. Menshikova, Natalia I. Piskunova, Dimensionality crossover in critical behaviour of ultrathin ferromagnetic films, Journal of Magnetism and Magnetic Materials, 387, (2015), 7782.
[5] Koh Yang Wei, Lee Hwee Kuan, Okabe Yutaka, Dynamically optimized Wang-Landau sampling with adaptive trial moves and modification factors, Physical Review E, 88:5, (2013), 053302.
[6] Belokon V. I., Kapitan V. Yu., Dyachenko O. I., Concentration of magnetic transitions in dilute magnetic materials, Journal of Physics: Conference Series, 490:1, (2014), 012165.
[7] Landau David P., Binder Kurt, A guide to Monte Carlo simulations in statistical physics, Cambridge university press, 2014.
[8] V. Yu. Kapitan, A. V. Perzhu, and K. V. Nefedev, High-performance Monte Carlo Simulation of Multilayer Magnetic Films, Journal of Nano& Electronic Physics, 9:5, (2017), 05015(4pp).
[9] V. Yu. Kapitan, K. V. Nefedev, Labyrinth Domain Structure in the Models with Long- range Interaction, Journal of nano and electronic physics, 6:3, (2014), 03005 [4 pages].
[10] S. Do Yi, S. Onoda, N. Nagaosa, J. H. Han, Skyrmions and anomalous hall effect in a Dzyaloshinskii-Moriya spiral magnet, Physical Review B, 80:5, (2009), 054416.
[11] A. Belemuk, S. Stishov, Phase transitions in chiral magnets from Monte Carlo simulations, Physical Review B, 95:22, (2017), 224433.
[12] V. Yu. Kapitan, Y. A. Shevchenko, A. V. Perzhu, E. V. Vasiliev, Thermodynamic Proper- ties of Heisenberg Spin Systems, Key Engineering Materials, 806:4, (2019), 142154.
[13] I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics, Journal of Physics and Chemistry of Solids, 4:4, (1958), 241255.
[14] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Physical Review, 120:1, (1960), 91.
[15] Rakic Predrag S., Radosevic Slobodan M., Mali Petar M. Stricevic Lazar M,Petric Tara D, Multipath Metropolis simulation: An application to the classical Heisenberg model, Physica A: Statistical Mechanics and its Applications, 44, (2016), 6980.
[16] F. Wang, D. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states, Physical review letters, 88:10, (2001), 2050.
[17] M. Deserno, How to generate equidistributed points on the surface of a sphere, If Polymerforshung (Ed.), 2004, 99.
[18] G. Brown, T. C. Schulthess, WangLandau estimation of magnetic properties for the Heisenberg model, Journal of applied physics, 97:10, (2005), 477.
[19] James Ahrens, Berk Geveci, Charles Law, Paraview: An end-user tool for large data visualization, The visualization handbook, 77, (2005).
[20] A. A. Sorokin, S. V. Makogonov, S. P. Korolev, The information infrastructure for collective scientific work in the Far East of Russia, Scientific and Technical Information Processing, 44:4, (2017), 302304.