..

2020, 1, . 3851


.

:
, ,

( PDF)

[1] E. Teramoto, Heat Flow in the Linear Chain of Harmonically Coupled Particles, Prog. Theor. Phys., 28:6, (1962), 10591064.
[2] S. Kashiwamura, E. Teramoto, Effect of an Isotopic Impurity on the Heat Flow in One- Dimensional Coupled Harmonic Oscillators, Prog. Theor. Phys. Suppl., 1962, No 23, 207222.
[3] E .I. Takizawa, K. Kobayasi, Heat Flow in a System of Coupled Harmonic Oscillators, Chin J. Phys., 1:2, (1963), 5973.
[4] K. Kobayasi, E.I. Takizawa, Effect of an Isotopic Impurity on the Energy Flow in a System of One-Dimensional Coupled Harmonic Oscillators, Chin J. Phys., 2:1, (1964), 1022.
[5] K. Kobayasi, E.I. Takizawa, Effect of a Light Isotopic Impurity on the Energy Flow in a System of One-Dimensional Coupled Harmonic Oscillators, Chin J. Phys., 2:2, (1964), 6879.
[6] R.J. Rubin, Momentum Autocorrelation Functions and Energy Transport in Harmonic Crystals Containing Isotopic Defects, Phys, Rev., 131:3, (1963), 964989.
[7] R.J. Rubin, W.L. Greer, Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal, J. Math. Phys., 12:8, (1971), 16861701.
[8] E.L. Lindman, Free-space boundary conditions for the time dependent wave equation, J. Comp. Phys., 18, (1975), 6678.
[9] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31:139, (1977), 629651.
[10] B. Engquist, A .Majda, Radiation boundary conditions for acoustic and elastic wave cal- culations, Comm. Pure Appl. Math., 32, (1979), 313357.
[11] L. Halpern, Absorbing Boundary Conditions for the Discretization Schemes of the One- Dimensional Wave Equation, Mathematics of Computation, 38:158, (1982), 415429.
[12] A. Dhar, Heat transport in low-dimensional systems, Advances in Physics, 57:5, (2008), 457537.
[13] Thermal Transport in Low Dimensions, Lecture Notes in Physics, 921, ed. S. Lepri, Springer International Publishing, 2016.
[14] E. Schrodinger, Zur Dynamik elastisch gekoppelter Punktsysteme, Annalen der Physik, 44, (1914), 916934.
[15] J.W. Gibbs, Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics, New York, 1902.
[16] .. , . , , , , 1999.
[17] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944.