Отображения алгебр измеримых операторов, сохраняющие нулевые произведения и нулевые йордановы произведения |
И. М. Жураев |
2012, выпуск 2, С. 195–200 |
Аннотация |
В работе даются критерии сохранения нулевых произведений и нулевых йордановых произведений отображениями, действующими между алгебрами измеримых операторов. |
Ключевые слова: измеримый оператор, топология сходимости по мере, след, гомоморфизм, йорданов гомоморфизм |
Полный текст статьи (файл PDF) |
Библиографический список |
[1] S. K. Berberian, “The regular ring of finite $AW^?$-algebra”, Ann. Math, 65 (1957), 224–242. [2] M. A. Chebotar, Wen-Fong Ke, Pjek-Hwee Lee, “Maps characterized by action on zero products”, Pacific J.Math., 216:2 (2004), 217–228. [3] M. A. Chebotar, Wen-Fong Ke, Pjek-Hwee Lee, Ruibin Zhand, “On maps preserving zero Jordan products”, Monatsh. Math., 149 (2006), 91–101. [4] J. Cui, J. Hou, “Linear maps on von Neumann algebras preserving zero products or TR-rank”, Bull. Austral. Math. Soc., 65 (2002), 79–91. [5] J. Cui, J. Hou, “Characterizations of nest algebra automorphisms”, Chinese Ann. Math. (to appear). [6] J. Hou, M. Gao, “Additive mappings on $B(H)$ that preserve zero products”, Kexue Tongbao (Chinese), 43 (1998), 2388–2392. [7] М. А. Муратов, В. И. Чилин, Алгебры измеримых и локально измеримых операторов, т. 69, Працi Iн-ту математики НАН Украiни, Kиiв, 2007, 390 с. [8] P. Semrl, “Linear mappings preserving square-zero matrices”, Bull. Austral. Math. Soc., 48 (1993), 365–370. [9] L. Zhao, J. Hou, “Jordan zero product preserving additive maps on operator algebras”, J. Math. Anal. Appl., 314 (2006), 689–700. |