Far Eastern Mathematical Journal

To content of the issue


On solvability of stationary boundary value problem for the heat and mass transfer equations


A. B. Smishlyaev, D. A. Tereshko

2004, issue 1, P. 41–52


Abstract
The boundary-value problem for the stationary Boussinesq heat and mass transfer equations under inhomogeneous non-standard boundary conditions for the velocity and mixed boundary conditions for the temperature and concentration is investigated. The local existence and uniqueness theorems are proved.

Keywords:
heat and mass transfer, existence and uniqueness theorems

Download the article (PDF-file)

References

[1] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoj neszhimaemoj zhidkosti, Nauka, M., 1970, 288 s.
[2] R. Temam, Uravneniya Nav'e – Stoksa, Mir, M., 1981, 408 s.
[3] V. Girault and P. A. Raviart, Finite element methods for Navier – Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986.
[4] A. V. Kazhixov, “Razreshimost' nekotoryx odnostoronnix kraevyx zadach dlya uravnenij Nav'e – Stoksa”, Din. splosh. sredy, 1974, № 16, 5–34, IG SO AN SSSR, Novosibirsk.
[5] V. V. Ragulin, “K zadache o protekanii vyazkoj zhidkosti skvoz' ogranichennuyu oblast' pri zadannom perepade davleniya ili napora”, Din. splosh. sredy, 1976, № 27, 78–92, IG SO AN SSSR, Novosibirsk.
[6] O. Pironneau, “Conditions aux limites sur la pression pour les equations de Stokes et de Navier – Stokes”, C. R. Acad. Sci. Se?rie I, 303 (1986), 403–406.
[7] C. Be?gue, C. Conca, F. Murat and O. Pironneau, “A nouveau sur les e?quations de Stokes et de Navier – Stokes avec des conditions aux limites sur la pression”, C. R. Acad. Sci. Se?rie I, 304 (1987), 23–28.
[8] C. Conca, F. Murat and O. Pironneau, “The Stokes and Navier-Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 279–318.
[9] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Preprint № 19 IPM DVO RAN, Dal'nauka, Vladivostok, 2000.
[10] G. V. Alekseev and D. A. Tereshko, “On solvability of inverse extremal problem for stationary equations of viscous heat conducting fluid”, J. Inverse Ill-Posed Probl., 6 (1998), 521–562.
[11] G. V. Alekseev, D. A. Tereshko, “Stacionarnye zadachi optimal'nogo upravleniya dlya uravnenij gidrodinamiki vyazkoj teploprovodnoj zhidkosti”, Sib. zhurn. ind. mat., 1:2 (1998), 24–44.
[12] D. A. Tereshko, “Razreshimost' e'kstremal'noj zadachi dlya techeniya vyazkoj teploprovodnoj zhidkosti v kanale”, Dal'nevost. mat. cb., 8, 1999, 130–139.
[13] G. V. Alekseev, A. B. Smyshlyaev, Razreshimost' neodnorodnyx kraevyx zadach dlya stacionarnyx uravnenij gidrodinamiki vyazkoj teploprovodnoj zhidkosti, Preprint № 6 IPM DVO RAN, Dal'nauka, Vladivostok, 1999, 44 s.
[14] G. V. Alekseev and A. B. Smishliaev, “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39.
[15] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa”, DAN, 375:3 (2000), 315–319.
[16] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991.
[17] D. A. Tereshko, “Kraevye zadachi teplomassoperenosa s odnorodnymi granichnymi usloviyami dlya skorosti”, Dal'nevost. mat. zhurn., 3:1 (2002), 24–33.
[18] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost' kraevoj zadachi dlya stacionarnyx uravnenij teplomassoperenosa pri smeshannyx kraevyx usloviyax”, Zhurn. vychisl. matem. i matem. fiz., 43:1 (2003), 66–80.
[19] A. A. Illarionov, A. Yu. Chebotarev, Sushhestvovanie slabyx reshenij smeshannoj stacionarnoj zadachi dlya uravnenij Nav'e – Stoksa, Preprint № 11 IPM DVO RAN, Dal'nauka, Vladivostok, 1999.
[20] A. A. Illarionov, A. Yu. Chebotarev, “O razreshimosti smeshannoj kraevoj zadachi dlya stacionarnyx uravnenij Nav'e – Stoksa”, Differ. uravn., 37:5 (2001), 689–695.
[21] A. A. Illarionov, “O razreshimosti kraevyx zadach dlya stacionarnyx uravnenij Nav'e – Stoksa”, Dal'nevost. mat. zhurn., 2:1 (2001), 16–36.
[22] G. V. Alekseev, R. V. Brizickij, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj zhidkosti so smeshannymi granichnymi usloviyami”, Dal'nevost. mat. Zhurn., 4:1 (2003), 108–126.

To content of the issue