About polarization with respect to hypersphere |
E. V. Kostyuchenko, E. G. Prilepkina |
2004, issue 1, P. 22–29 |
Abstract |
Polarization with respect to hypersphere is expressed with the help of conformal mappings through polarization of flat sets with respect to a straight line. It is formulated continuous (partial) simmetrization with respect to hypersphere in euclidean n-space. As an application of the new representation of hypersphere-polarization the non-increasing of the conformal capacity of condenser is proved. |
Keywords: condenser, conformal capacity, simmetrization, polarization |
Download the article (PDF-file) |
References |
[1] V. N. Dubinin, “Simmetrizaciya v geometricheskoj teorii funkcij kompleksnogo peremennogo”, Uspexi matematicheskix nauk, 49:1 (1994), 3–76. [2] V. Wolontis, “Properties of conformal invarians”, Amer. J. Math., 74:3 (1952), 587–606. [3] V. N. Dubinin, “Capacities and geometric transformations of subsets in n-space”, Geometric and Functional Analysis, 3:4 (1993). [4] A. Yu. Solynin, “Polyarizaciya i funkcional'nye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185. [5] A. Yu. Solynin, “Nepreryvnaya simmetrizaciya mnozhestv”, Zapiski nauchnyx seminarov LOMI, 185, 1990, 125–140. [6] E. G. Axmedzyanova, “Simmetrizaciya otnositel'no gipersfery”, Dal'nevostochnyj matematicheskij sbornik, 1, 1995, 40–50. [7] V. N. Dubinin, “Preobrazovanie kondensatorov v prostranstve”, Dokl. AN SSSR, 296:1 (1987), 18–20. |