Far Eastern Mathematical Journal

To content of the issue


Rheological models of hetero-modular and granular media


V. M. Sadovskii

2003, issue 2, P. 252–263


Abstract
The general scheme for the construction of the mathematical models of uniaxial deformation of rheologically complicated media is described considering different resistrance to stretching and compression deformation. The different possibilities in the way of model generalization to the case of spatial stress and strain state are investigated. The incoming to the models identification problem is discussed. The set of equations that can be used at construction ofeffective calculating algorithms is obtained.

Keywords:

Download the article (PDF-file)

References

[1] V. V. Sokolovskij, Statika sypuchej sredy, Fizmatlit, M., 1960, 244 s.
[2] V. P. Maslov, V. P. Myasnikov, V. G. Danilov, Matematicheskoe modelirovanie avarijnogo bloka Chernobyl'skoj AE'S, Nauka, M., 1988, 144 s.
[3] V. N. Nikolaevskij, “Opredelyayushhie uravneniya plasticheskogo deformirovaniya sypuchej sredy”, PMM, 35:6 (1971), 1070–1082.
[4] Yu. V. Golovanov, I. V. Shirko, “Obzor sovremennogo sostoyaniya mexaniki bystryx dvizhenij granulirovannyx materialov”, Mexanika granulirovannyx sred: Teoriya bystryx dvizhenij, Novoe v zarubezhnoj nauke, 36, Mir, M., 1985, 271–279 s.
[5] A. Xaar, T. Karman, “K teorii napryazhennyx sostoyanij v plasticheskix i sypuchix sredax”, Teoriya plastichnosti, IL., M., 1948, 41–56.
[6] A. I. Olejnikov, “O modeli raznomodul'noj sredy s ogranicheniyami”, DAN, 334:243 3 (1994), 314–316.
[7] G. I. Bykovcev, D. D. Ivlev, Teoriya plastichnosti, Dal'nauka, Vladivostok, 1998, 528 s.
[8] V. M. Sadovskij, “Zadachi dinamiki sypuchix sred”, Mat. modelirovanie, 13:243 5 (2001), 62–74.
[9] Z. Mruz, Ch. Shimanskij, “Neassociirovannyj zakon techeniya v opisanii plasticheskogo techeniya granulirovannyx sred”, Mexanika granulirovannyx sred: Teoriya bystryx dvizhenij, Novoe v zarubezhnoj nauke, 36, Mir, M., 1985, 9–43.
[10] V. L. Berdichevskij, Variacionnye principy mexaniki sploshnoj sredy, Nauka, M., 1983, 448 s.
[11] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shrejber, Volnovaya dinamika gazo- i parozhidkostnyx sred, E'nergoatomizdat, M., 1990, 248 s.

To content of the issue