Far Eastern Mathematical Journal

To content of the issue


Structure of self-balanced stresses stresses in continuum


V. P. Myasnikov, M. A. Guzev, A. A. Ushakov

2002, issue 2, P. 231–241


Abstract
It is shown that the presentation of the self - balanced stresses can be obtained on the foundation of the variational principle.

Keywords:

Download the article (PDF-file)

References

[1] G. N. Chernyshev, A. L. Popov, V. M. Kozincev, I. I. Ponomarev, Ostatochnye napryazheniya v deformiruemyx tverdyx telax, Nauka, M., 1996, 240 s.
[2] L. D. Landau, E. M. Livshic, Teoriya uprugosti, Nauka, M., 1987, 248 s.
[3] K. Kondo, On the geometrical and physical foundations of the theory of yielding, Proc. 2nd Japan Nat. Congr. Appl. Mech., Tokyo, 1953, 41–47.
[4] B. A. Bilby, R. Bullough, E. Smith, Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry, Proc. Roy. Soc. A, 231 (1955), 263 –273.
[5] I. P. Myasnikov, M. A. Guzev, Geometricheskaya model' vnutrennix samouravnoveshennyx napryazhenij v tverdyx telax, Doklady akademii nauk, 38:5 (2001), 627–629.
[6] S. K. Godunov , E.I. Romenskij, E'lementy mexaniki sploshnoj sredy, Nauchnaya kniga, Novosibirsk, 1998, 268 s.
[7] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986, 760 s.
[8] V. L. Berdichevskij, Variacionnye principy mexaniki sploshnoj sredy, Nauka, M., 1983, 448 s.
[9] L. D. Landau, E. M. Livshic, Teoriya polya, Nauka, M., 1988, 512 s.

To content of the issue