Structure of self-balanced stresses stresses in continuum |
V. P. Myasnikov, M. A. Guzev, A. A. Ushakov |
2002, issue 2, P. 231–241 |
Abstract |
It is shown that the presentation of the self - balanced stresses can be obtained on the foundation of the variational principle. |
Keywords: |
Download the article (PDF-file) |
References |
[1] G. N. Chernyshev, A. L. Popov, V. M. Kozincev, I. I. Ponomarev, Ostatochnye napryazheniya v deformiruemyx tverdyx telax, Nauka, M., 1996, 240 s. [2] L. D. Landau, E. M. Livshic, Teoriya uprugosti, Nauka, M., 1987, 248 s. [3] K. Kondo, On the geometrical and physical foundations of the theory of yielding, Proc. 2nd Japan Nat. Congr. Appl. Mech., Tokyo, 1953, 41–47. [4] B. A. Bilby, R. Bullough, E. Smith, Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry, Proc. Roy. Soc. A, 231 (1955), 263 –273. [5] I. P. Myasnikov, M. A. Guzev, Geometricheskaya model' vnutrennix samouravnoveshennyx napryazhenij v tverdyx telax, Doklady akademii nauk, 38:5 (2001), 627–629. [6] S. K. Godunov , E.I. Romenskij, E'lementy mexaniki sploshnoj sredy, Nauchnaya kniga, Novosibirsk, 1998, 268 s. [7] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986, 760 s. [8] V. L. Berdichevskij, Variacionnye principy mexaniki sploshnoj sredy, Nauka, M., 1983, 448 s. [9] L. D. Landau, E. M. Livshic, Teoriya polya, Nauka, M., 1988, 512 s. |