Far Eastern Mathematical Journal

To content of the issue


Fredholm formulae for kernels which are linear with respect to parameter


I. M. Novitskii

2002, issue 2, P. 173–194


Abstract
In this paper, we construct formulae, which are similar to the classical determinant formulae of Fredholm, for solving second-kind integral equations in $L_2(\mathbb{R})$ with continuous on $\mathbb{R}^2$ Carleman kernels of the form $H(s,t)+\mu G(s,t)$, where $\mu$ is a complex parameter

Keywords:

Download the article (PDF-file)

References

[1] Anthony F. Ruston, Fredholm theory in Banach spaces, Cambridge Univ. Press, Cambridge e.a., 1986.
[2] I. Fredholm, Sur une classe d'e?quations fonctionnelles, Acta math., 27 (1903), 365–390.
[3] I. Fredholm, Letter to G. Mittag–Leffler. August 8, 1899, Uvres Comple?tes de Ivar Fredholm, Litos Reprotryck, Malmo?, 1955.
[4] I. M. Novickij, O minorax Fredgol'ma dlya vpolne nepreryvnyx operatorov, Dal'nevostochnyj matematicheskij sbornik, 7, 1999, 103–122.
[5] I. M. Novickij, Privedenie linejnyx operatorov v $L_2$ k integral'nomu vidu s gladkimi yadrami, Dokl. AN SSSR, 318:5 (1991), 1088–1091.
[6] I. M. Novickij, Simultaneous unitary equivalence of operators families to integral operators with smooth kernels and its applications, Preprint instituta prikladnoj matematiki, DVO AN SSSR, Vladivostok, 1990, 29 s.
[7] N. I. Axiezer, I. M. Glazman, Teoriya linejnyx operatorov v gil'bertovom prostranstve, Nauka, M., 1966.
[8] I. M. Novitskii?\, Integral representations of linear operators by smooth Carleman kernels of Mercer type, Proc. London Math. Soc. III ser., 68:1 (1994), 161–177.
[9] M. Markus, Ch. Mink, Obzor po teorii matric i matrichnyx neravenstv, Nauka, M., 1972.

To content of the issue