Far Eastern Mathematical Journal

To content of the issue


Extrapolation method for inversion of the generalized Radon transform


Aref'ev E.P., Prokhorov I.V.

2025, issue 1, P. 13-20
DOI: https://doi.org/10.47910/FEMJ202501


Abstract
The issues of numerical determination of a function defined on a plane by its integrals along strips of relatively small width are considered. An algorithm for solving the problem is proposed, based on extrapolation of several images obtained as a result of approximate inversion of the Radon transform for strips of different widths. The results of numerical calculations are presented, limitations and prospects for using the extrapolation approach are indicated.

Keywords:
generalized Radon transform, extrapolation, numerical algorithm.

Download the article (PDF-file)

References

[1] Radon J., “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten”, Berichte Sachsische Akademie der Wissen schaften, 29, (1917), 262–277.
[2] Natterer F., Matematicheskie aspekty komp'yuternoi tomografii, Mir, Moskva, 1990.
[3] Tereshchenko S.A., Metody vychislitel'noi tomografii, Fizmatlit, Moskva, 2004.
[4] Sharafutdinov V.A., “Zadacha integral'noi geometrii dlya obobshchennykh tenzornykh polei na Rn”, Dokl. AN SSSR, 286:2, (1986), 305–307.
[5] Derevtsov E.YU., “Ob odnom obobshchenii eksponentsial'nogo luchevogo preobrazovaniya v tomografii”, Sib. zhurn. chist. i prikl. matem., 18:4, (2018), 29–42.
[6] Anikonov D.S., Konovalova D.S., “Zadacha o neizvestnoi granitse dlya obobshchennogo preobrazovaniya Radona v chetnomernom prostranstve”, Matem. tr., 27:3, (2024), 5–19.
[7] Anikonov D.S., Konovalova D.S., “Problema obrashcheniya preobrazovanii Radona, opredelennykh na psevdovypuklykh mnozhestvakh”, Dokl. RAN. Matem., inform., prots. upr., 516, (2024), 93–97.
[8] Anikonov D.S., Kovtanyuk A.E., Prokhorov I.V., Transport Equation and Tomography, Inverse and Ill-Posed Problems Series, 30, VSP, Boston-Utrecht, 2002.
[9] Romanov V.G., “Luchevaya postanovka zadachi akusticheskoi tomografii”, Dokl. RAN. Matem., inform., prots. upr., 505, (2022), 50–55.
[10] Romanov V.G., “Obratnaya zadacha dlya nelineinogo uravneniya perenosa”, Sib. matem. zhurn., 65:5, (2024), 1022–1028.
[11] Prokhorov I.V., Yarovenko I.P., “Povyshenie kachestva tomograficheskikh izobrazhenii pri obluchenii sredy impul'sami razlichnoi dlitel'nosti”, Dokl. RAN. Matem., inform., prots. upr., 505, (2022), 71–78.
[12] Kovalenko E.O., Prokhorov I.V., “Ob odnom ekstrapolyatsionnom algoritme uluchsheniya kachestva gidrolokatsionnykh izobrazhenii morskogo dna”, Dal'nevost. matem. zhurn., 23:2, (2023), 211–221.
[13] Kovalenko E.O., Prokhorov I.V., Sushchenko A.A., “Ekstrapolyatsionnye algoritmy uluchsheniya kachestva gidrolokatsionnykh izobrazhenii”, Vychislitel'nye tekhnologii, 29:3, (2024), 38–51.
[14] Yarovenko I.P., Prokhorov I. V., “An extrapolation method for improving the quality of tomographic images using multiple short-pulse irradiations”, Journal of Inverse and Illposed Problems, 32:1, (2024), 57–74.
[15] Yarovenko I.P., Vornovskikh P.A., Prokhorov I.V., “Ekstrapolyatsiya tomograficheskikh izobrazhenii po dannym mnogokratnogo impul'snogo zondirovaniya”, Sib. zhurn. industr. matem., 27:3, (2024), 177–195.
[16] Shepp L.A., Logan B.F., “The Fourier Reconstruction of a Head Section”, IEEE Transactions on Nuclear Science, 21:3, (1974), 21–43.
[17] Nazarov V.G., Prokhorov I.V., Yarovenko I.P., “Identification of an Unknown Substance by the Methods of Multi-Energy Pulse X-ray Tomography”, Mathematics, 11:15, (2023), 3263.

To content of the issue