Extrapolation method for inversion of the generalized Radon transform |
Aref'ev E.P., Prokhorov I.V. |
2025, issue 1, P. 13-20 DOI: https://doi.org/10.47910/FEMJ202501 |
Abstract |
The issues of numerical determination of a function defined on a plane by its integrals along strips of relatively small width are considered. An algorithm for solving the problem is proposed, based on extrapolation of several images obtained as a result of approximate inversion of the Radon transform for strips of different widths. The results of numerical calculations are presented, limitations and prospects for using the extrapolation approach are indicated. |
Keywords: generalized Radon transform, extrapolation, numerical algorithm. |
Download the article (PDF-file) |
References |
[1] Radon J., “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten”, Berichte Sachsische Akademie der Wissen schaften, 29, (1917), 262–277. [2] Natterer F., Matematicheskie aspekty komp'yuternoi tomografii, Mir, Moskva, 1990. [3] Tereshchenko S.A., Metody vychislitel'noi tomografii, Fizmatlit, Moskva, 2004. [4] Sharafutdinov V.A., “Zadacha integral'noi geometrii dlya obobshchennykh tenzornykh polei na Rn”, Dokl. AN SSSR, 286:2, (1986), 305–307. [5] Derevtsov E.YU., “Ob odnom obobshchenii eksponentsial'nogo luchevogo preobrazovaniya v tomografii”, Sib. zhurn. chist. i prikl. matem., 18:4, (2018), 29–42. [6] Anikonov D.S., Konovalova D.S., “Zadacha o neizvestnoi granitse dlya obobshchennogo preobrazovaniya Radona v chetnomernom prostranstve”, Matem. tr., 27:3, (2024), 5–19. [7] Anikonov D.S., Konovalova D.S., “Problema obrashcheniya preobrazovanii Radona, opredelennykh na psevdovypuklykh mnozhestvakh”, Dokl. RAN. Matem., inform., prots. upr., 516, (2024), 93–97. [8] Anikonov D.S., Kovtanyuk A.E., Prokhorov I.V., Transport Equation and Tomography, Inverse and Ill-Posed Problems Series, 30, VSP, Boston-Utrecht, 2002. [9] Romanov V.G., “Luchevaya postanovka zadachi akusticheskoi tomografii”, Dokl. RAN. Matem., inform., prots. upr., 505, (2022), 50–55. [10] Romanov V.G., “Obratnaya zadacha dlya nelineinogo uravneniya perenosa”, Sib. matem. zhurn., 65:5, (2024), 1022–1028. [11] Prokhorov I.V., Yarovenko I.P., “Povyshenie kachestva tomograficheskikh izobrazhenii pri obluchenii sredy impul'sami razlichnoi dlitel'nosti”, Dokl. RAN. Matem., inform., prots. upr., 505, (2022), 71–78. [12] Kovalenko E.O., Prokhorov I.V., “Ob odnom ekstrapolyatsionnom algoritme uluchsheniya kachestva gidrolokatsionnykh izobrazhenii morskogo dna”, Dal'nevost. matem. zhurn., 23:2, (2023), 211–221. [13] Kovalenko E.O., Prokhorov I.V., Sushchenko A.A., “Ekstrapolyatsionnye algoritmy uluchsheniya kachestva gidrolokatsionnykh izobrazhenii”, Vychislitel'nye tekhnologii, 29:3, (2024), 38–51. [14] Yarovenko I.P., Prokhorov I. V., “An extrapolation method for improving the quality of tomographic images using multiple short-pulse irradiations”, Journal of Inverse and Illposed Problems, 32:1, (2024), 57–74. [15] Yarovenko I.P., Vornovskikh P.A., Prokhorov I.V., “Ekstrapolyatsiya tomograficheskikh izobrazhenii po dannym mnogokratnogo impul'snogo zondirovaniya”, Sib. zhurn. industr. matem., 27:3, (2024), 177–195. [16] Shepp L.A., Logan B.F., “The Fourier Reconstruction of a Head Section”, IEEE Transactions on Nuclear Science, 21:3, (1974), 21–43. [17] Nazarov V.G., Prokhorov I.V., Yarovenko I.P., “Identification of an Unknown Substance by the Methods of Multi-Energy Pulse X-ray Tomography”, Mathematics, 11:15, (2023), 3263. |