Equilibrium problems for elastic body with a crack and thin conjugated inclusions |
Nikolaeva N.A. |
2024, issue 1, P. 73-95 DOI: https://doi.org/10.47910/FEMJ202408 |
Abstract |
An equilibrium problem for an elastic body is considered. It is assumed that the body has crack which junction the thin inclusion at a given point. We analyze a conjugate conditions parts of thin inclusion. Inequality type boundary conditions are considered at the crack faces to prevent a mutual penetration between the faces. Existence of solutions is proved. Equivalent problem formulations are discussed. The passage to the limit under stiffness parameter of thin inclusions to infinity. |
Keywords: crack, thin hard inclusion, fine elastic inclusion, variational problem, non-penetration condition. |
Download the article (PDF-file) |
References |
[1] Mett'iuz F., Rolings R., Kompozitnye materialy. Mekhanika i tekhnologiia, Tekhnosfera, M., 2004. [2] Solomonov Iu.S., Georgievskii V.P., Nedbai A.Ia., Andriushin V.A., Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek, Fizmatlit, M., 2014. [3] Khludnev A.M., Kovtunenko V.A., Analysis of Cracks in Solids, WIT Press, Southampton-Boston, 2000. [4] Khludnev A.M., Zadachi teorii uprugosti v negladkikh oblastiakh., Fizmatlit, M., 2010. [5] Khludnev A.M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16, (2010), 1955–1967. [6] Lazarev N.P., “Zadacha o ravnovesii plastiny Timoshenko, soderzhashchei treshchinu vdol' tonkogo zhestkogo vkliucheniia”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Komp'iut. nauki., 1, (2014), 32–45. [7] Fankina I.V., “Kontaktnaia zadacha dlia uprugoi plastiny s tonkim zhestkim vkliucheniem”, Sib. zhurn. industr. matem., 19:3, (2016), 90–98. [8] Shcherbakov V.V., “Ob odnoi zadache upravleniia formoi tonkikh vkliuchenii v uprugikh telakh”, Sib. zhurn. industr. matem., 16:1, (2013), 138–147. [9] Furtsev A.I., “O kontakte tonkogo prepiatstviia i plastiny, soderzhashchei tonkoe vkliuchenie”, Sib. zhurn. chist. i prikl. matem., 17:4, (2017), 94–111. [10] Namm R.V., Tsoy G.I., “Solution of a contact elasticity problem with a rigid inclusion”, Computational Mathematics and Mathematical Physics, 59:4, (2019), 659-666. [11] Popova T.S., “Zadachi o tonkikh vkliucheniiakh v dvumernom viazkouprugom tele”, Sib. zhurn. industr. matem., 21:2, (2018), 66–78. [12] Nikolaeva N.A., “O ravnovesii uprugikh tel s treshchinami, peresekaiushchimi tonkie vkliucheniia”, Sib. zhurn. industr. matem., 22:4, (2019), 68–80. [13] Nikolaeva N., “The conjugation thin inclusions problem in elastic bodies with crack”, Journal of Physics: Conference Series, 1666:1, (2020), 012038. [14] Khludnev A.M., “Equilibrium of an elastic body with closely spaced thin inclusions”, Comp. Math. Math. Phys., 58, (2018), 1660–1672. [15] Faella L., Khludnev A.M., “Junction problem for elastic and rigid inclusions in elastic bodies”, Mathematical Methods in the Applied Sciences., 39:12, (2016). [16] Nikolaeva N.A., “Plastina Kirkhgofa — Liava s ploskim zhestkim vkliucheniem”, Cheliab. fiz.-matem. zhurn., 8:1, (2023), 29–46. [17] Khludnev A.M., Leugering G., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems., 2:1, (2014), 1–21. [18] Khludnev A.M., “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids., 3381–3390. [19] Khludnev A.M., Popova T.S., “Ob ierarkhii tonkikh vkliuchenii v uprugikh telakh”, Matematicheskie zametki SVFU, 23:1, (2016), 87–107. [20] Khludnev A.M., Popova T.S., “Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74, (2016), 705–718. [21] Khludnev A.M., Popova T.S., “Zadacha sopriazheniia uprugogo vkliucheniia Timoshenko i poluzhestkogo vkliucheniia”, Matematicheskie zametki SVFU, 25:1, (2018), 73–89. [22] Khludnev A.M., Faella L., Popova T.S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4, (2017), 1–14. [23] Rudoy E.M., Lazarev N.P., “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko’s beam”, Journal of Computational and Applied Mathematics, 334, (2018), 18–26. [24] Morozov N.F., Matematicheskie voprosy teorii treshchin, Nauka, M., 1984. [25] Samarskii A.A., Andreev V.B., Raznostnye metody dlia ellipticheskikh uravnenii, Nauka, M., 1976. [26] Boerquin F., Ciarlet P.G., “Modeling and justification of eigenvalue problems for junctions between elastic structures”, J. Functional Analysis, 87, (1989), 392–427. [27] Gaudiello A., Monneau R., Mossino J., al. et., “Junctions of elastic plates and beams”, J. Control Optimisation and Calculus of Variations, 13:3, (2007), 419–457. [28] Dret H.Le, “Modeling of the junction between two rods”, J. Math. Pures Appl., 68:3, (1989), 365–397. [29] Bogan Iu.A., “Ob usloviiakh sopriazheniia A.A. Samarskogo i V.B. Andreeva v teorii uprugikh balok”, Matem. zametki, 92:5, (2012), 662–669. [30] Berezhnitskii L.T., Panasiuk V.V., Stashchuk N.G., “Vzaimodeistvie zhestkikh lineinykh vkliuchenii i treshchin v deformiruemom tele”, Raznostnye metody dlia ellipticheskikh uravnenii, Nauk. dumka, Kiev, 1983. [31] Mochalov E.V., Sil'vestrov V.V., “Zadacha vzaimodeistviia tonkikh zhestkikh ostrokonechnykh vkliuchenii, raspolozhennykh mezhdu raznymi uprugimi materialami”, Izv. RAN. MTT., 5, (2011), 99–117. [32] Mkhitarian S.M., “O napriazhennom sostoianii uprugoi beskonechnoi plastiny s konechnoi treshchinoi, vzaimodeistvuiushchei s absoliutno zhestkim tonkim vkliucheniem”, Doklady NAN RA, 118:1, (2018), 39–48. [33] Bogan Iu.A., “Osrednenie neodnorodnoi uprugoi balki pri sopriazhenii elementov sharnirom konechnoi zhestkosti”, Sib. zhurn. industr. matem., 1:2, (1998), 67–72. [34] Durante T., Nazarov S.A., Kardone Dzh., “Modelirovanie sochlenenii plastin i sterzhnei posredstvom samosopriazhennykh rasshirenii”, Vestnik SPbGU, 1:2, (2009), 3–14. [35] Zhil'tsov A.V., Namm R.V., “Ustoichivyi algoritm resheniia polukoertsitivnoi zadachi kontakta dvukh tel s treniem na granitse”, Dal'nevost. matem. zhurn., 19:2, (2019), 173—184. [36] Khludnev A.M., Popova T.S., “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control”, Comp. Math. Appl., 77, (2019), 253–262. |