Far Eastern Mathematical Journal

To content of the issue


The best approximation of functions analytic in the unit circle in weighted Bergman space


Langarshoev M.R., Aydarmamadov A.G.

2024, issue 1, P. 55-66
DOI: https://doi.org/10.47910/FEMJ202406


Abstract
In this paper, we obtained the exact inequalities between the best approximations of analytical in the unit circle functions and generalized modulus of continuity of the $m$-th order in the weighted Bergman space $B_{2,\gamma}.$ The exact values of $n$-widths of some classes of functions in a weighted Bergman space are calculated.

Keywords:
generalized modulus of continuity, best approximation, weighted Bergman space, complex algebraic polynomial, $n$-widths.

Download the article (PDF-file)

References

[1] Babenko K.I., “O nailuchshikh priblizheniiakh odnogo klassa analiticheskikh funktsii”, Izv. AN SSSR. Ser. matem., 22:5, (1958), 631–640.
[2] Tikhomirov V.M., “Poperechniki mnozhestv v funktsional'nykh prostranstvakh i teoriia nailuchshikh priblizhenii”, UMN, 15:3, (1960), 81–120.
[3] Taikov L.V., “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 1:2, (1967), 155–162.
[4] Dveirin M.Z., “Poperechniki i ?-entropiia klassov funktsii, analiticheskikh v edinichnom kruge”, Teoriia funktsii, funktsional'nyi analiz i pril, 23, (1975), 32–46.
[5] Farkov Iu.A., “O poperechnikakh nekotorykh klassov analiticheskikh funktsii”, UMN, 39:1, (1984), 161–162.
[6] Pinkus A., n-Widths in Approximation Theory, Springer-Verlag. Heidelberg. New York. Tokyo, Berlin, 1985.
[7] Vakarchuk S.B., “O nekotorykh ekstremal'nykh zadachakh teorii priblizhenii v kompleksnoi ploskosti”, Ukr. matem. zhurn., 41:26, (1989), 799–802.
[8] Vakarchuk S.B., “O nailuchshikh lineinykh metodakh priblizheniia i poperechnikakh nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 65:2, (1999), 186–193.
[9] Shabozov M.Sh., Shabozov O.Sh., “Poperechniki nekotorykh klassov analiticheskikh funktsii v prostranstve Khardi H2”, Matem. zametki, 68:5, (2000), 796–800.
[10] Vakarchuk S.B., “Tochnye znacheniia poperechnikov klassov analiticheskikh v kruge funktsii i nailuchshie lineinye metody priblizheniia”, Matem. zametki, 72:5, (2002), 665–669.
[11] Shabozov M.Sh., Pirov Kh.Kh., “Tochnye konstanty v neravenstvakh tipa Dzheksona dlia priblizheniia analiticheskikh funktsii iz H_r^p, 1?p?2”, Dokl. RAN, 394:4, (2004), 19–24.
[12] Shabozov M.Sh., Iusupov G.A., “Nailuchshie metody priblizheniia i znacheniia poperechnikov nekotorykh klassov funktsii v prostranstve H_(q,p), 1 ? q ? ?, 0< ? ? 1”, Sib. matem. zhurn., 57:2, (2016), 469–478.
[13] Shabozov M.Sh., Iusupov G.A., Zargarov Dzh.Dzh., “O nailuchshei sovmestnoi polinomial'noi approksimatsii funktsii i ikh proizvodnykh v prostranstve Khardi”, Tr. IMM UrO RAN, 27:4, (2021), 239–254.
[14] Vakarchuk S.B., “O poperechnikakh nekotorykh klassov analiticheskikh v edinichnom kruge funktsii”, Ukr. matem. zhurn., 42:7, (1990), 873–881.
[15] Vakarchuk S.B., “Nailuchshie lineinye metody priblizheniia i poperechniki klassov analiticheskikh v kruge funktsii”, Matem. zametki, 57:1, (1995), 30–39.
[16] Shabozov M.Sh., Langarshoev M.R., “Priblizhenie nekotorykh klassov analiticheskikh funktsii v prostranstve B_p”, Vestnik KhoGU, 1:1, (1999), 45–50.
[17] Shabozov M.Sh., “Poperechniki nekotorykh klassov analiticheskikh funktsii v prostranstve Bergmana”, Dokl. RAN, 383:2, (2002), 171–174.
[18] Pirov Kh.Kh., Langarshoev M.R., “Znachenie poperechnikov nekotorykh klassov analiticheskikh funktsii, opredeliaemykh moduliami nepreryvnosti vysshikh poriadkov, v prostranstve Bergmana”, Dokl. AN. Resp. Tadzh., 54:7, (2011), 519–525.
[19] Shabozov M.Sh., Kadamshoev N.U., “Tochnye neravenstva mezhdu nailuchshimi srednekvadraticheskimi priblizheniiami analiticheskikh v kruge funktsii i nekotorymi kharakteristikami gladkosti v prostranstve Bergmana”, Matem. zametki, 10:2, (2021), 266–281.
[20] Shabozov M.Sh., Shabozov O.Sh., “O nailuchshem priblizhenii nekotorykh klassov analiticheskikh funktsii v vesovykh prostranstvakh Bergmana B2,?”, Dokl. RAN, 412:4, (2007), 466–469.
[21] Vakarchuk S.B., Shabozov M.Sh., “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Matem. sb., 201:8, (2010), 3–21.
[22] Abilov V.A., Abilova F.V., Kerimov M.K., “Tochnye otsenki skorosti skhodimosti riadov Fur'e funktsii kompleksnoi peremennoi v prostranstve L2 (D, p(z))”, Zh. vychisl. matem. i matem. fiz., 50:6, (2010), 999–1004.
[23] Shabozov M.Sh., Langarshoev M. R., “O nailuchshikh lineinykh metodakh i znacheniiakh poperechnikov nekotorykh klassov analiticheskikh funktsii v vesovom prostranstve Bergmana”, Dokl. RAN, 450:5, (2013), 518–521.
[24] Akopian R.R., Saidusainov M.S., “Tri ekstremal'nye zadachi v prostranstvakh Khardi i Bergmana analiticheskikh funktsii v kruge”, Tr. IMM UrO RAN, 23:3, (2017), 22–32.
[25] Shabozov M.Sh., Saidusainov M.S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi riadami Fur'e v vesovom prostranstve Bergmana”, Vladikavk. mat. zhurn., 20:1, (2018), 86–97.
[26] Langarshoev M.R., “O nailuchshem polinomial'nom priblizhenii funktsii v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 21:1, (2019), 27–36.
[27] Vakarchuk S.B., “Otsenki znachenii n-poperechnikov klassov analiticheskikh funktsii v vesovykh prostranstvakh H2,? (D)”, Matem. zametki, 108:6, (2020), 803–822.
[28] Langarshoev M.R., “Neravenstva tipa Dzheksona–Stechkina i poperechniki klassov funktsii v vesovom prostranstve Bergmana”, Chebyshevskii sb., 22:2, (2021), 135–144.
[29] Runovskii K.V., “O priblizhenii semeistvami lineinykh polinomial'nykh operatorov v prostranstvakh Lp, 0[30] Vakarchuk S.B., Shabozov M.Sh., Zabutnaia V.I., “Strukturnye kharakteristiki funktsii iz L2 i tochnye znacheniia poperechnikov nekotorykh funktsional'nykh klassov”, Ukr. matem. visnik, 11:3, (2014), 417–441.
[31] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976.
[32] Vakarchuk S.B., Zabutnaia V.I., “Tochnoe neravenstvo tipa Dzheksona-Stechkina v L2 i poperechniki funktsional'nykh klassov”, Matem. zametki, 86:3, (2009), 328–336.
[33] Hardy G.G., Littlewood J.E., Polya G., Inequality, Cambridge University Press, ambridge, 1952.
[34] Vakarchuk S.B., Zabutnaia V.I., “Neravenstva Dzheksona–Stechkina dlia spetsial'nykh modulei nepreryvnosti i poperechniki funktsional'nykh klassov v prostranstve L2”, Matem. zametki, 92:4, (2012), 497–514.

To content of the issue