On a $W^2_2$ regularity of a solution of semicoercive variational inequalities |
R. V. Namm, A. G. Podgaev |
2002, issue 1, P. 210–215 |
Abstract |
The $W^2_2$-regularity of the solution is established for semicoercive variational inequalities. |
Keywords: |
Download the article (PDF-file) |
References |
[1] H. Brezis, “Problemes unilateraux”, J. de Math.Pures et Appliquees, 51 (1972), 1–168. [2] P. Grisvard, “Boundary value problems in non-smooth domains”, Lecture Notes MD 20742, 19, College Park, University of Maryland. Dep. Math., 1980. [3] M. Minu, Matematicheskoe programmirovanie, Nauka, M., 1990. [4] A. A. Kaplan, R. V. Namm, “Ob ocenke skorosti sxodimosti iteracionnyx processov s prox-regulyarizaciej”, Sbornik “Issledovaniya po uslovnoj korrektnosti zadach matematicheskoj fiziki”, Novosibirsk, 1989, 60–77. [5] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, Springer-Verlag, Berlin – Heidelberg – New York, 1997, 214–228. [6] A. Ya. Zolotuxin, R. V. Hamm, A. V. Pachina, “Priblizhennoe reshenie zadachi Mosolova i Myasnikova s treniem na granice po zakonu Kulona”, Sib. zhurn. vychisl. matemitiki, 4:2 (2001), 163–177, RAH. Sib. otd-nie, Hovosibirsk. [7] F. P. Vasil'ev, Lekcii po metodam resheniya e'kstremal'nyx zadach, MGU, M., 1974. [8] P.-Zh. Loran., Approksimaciya i optimizaciya, Mir, M., 1975. [9] G. Dyuvo, Zh. L. Lions, Neravenstva v mexanike i fizike, Nauka, M., 1980. [10] S. G. Mixlin, Linejnye upavneniya v chastnyx ppoizvodnyx, Vysshaya shkola, M., 1977. [11] R. V. Namm, A. G. Podgaev, Edinstvennost' v odnom variacionnom neravenstve s nedifferenciruemym funkcionalom, otnosyashhimsya k zadache s treniem, Preprint № 7. IPM DVO RAN, Dal'nauka, Xabarovsk, 1994. [12] A. G. Podgaev, “O teremax edinstvennosti v zadache minimizacii odnogo nedifferenciruemogo funkcionala”, Dal'nevostochnyj mat. Zhurnal, 1:1 (2001), 28–37. |