Optimal multiplicative control of a semilinear parabolic equation |
Chebotarev A.Yu. |
2023, issue 2, P. 270-277 DOI: https://doi.org/10.47910/FEMJ202324 |
Abstract |
An analysis of optimal control problems for a nonlinear parabolic initial-boundary value problem that models the dynamics of the collective behavior of a bacterial community is presented. Estimates for the solution of the initial-boundary value problem are obtained, the solvability of control problems is proved, and optimality conditions are derived. The weak "bang-bang" principle is set for the problem with the final observation. |
Keywords: optimal control problems, optimality system, semilinear parabolic equation, multiplicative control. |
Download the article (PDF-file) |
References |
[1] S. T. Rutherford, B. L. Bassler, “Bacterial quorum sensing: its role in virulence and possibilities for its control”, Cold Spring Harb. Perspect. Med., 2 (2012), a012427. [2] A. K. Bhardwa, K. Vinothkumar, N. Rajpara, “Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance”, Recent Pat. Antiinfect. Drug Discov., 8 (2013), 68–83. [3] C. Kuttler, A. Maslovskaya, “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Math. Model., 93 (2021), 360–375. [4] A. Maslovskaya, C. Kuttler, A. Chebotarev, A. Kovtanyuk, “Optimal multiplicative control of bacterial quorum sensing under external enzyme impact”, Math. Model. Nat. Phenom., 17 (2022), 29. [5] A. D. Ioffe, V. M. Tikhomirov, Teoriia ekstremal'nykh zadach, Nauka, Moskva, 1974. [6] A. V. Fursikov, Optimal'noe upravlenie raspredelennymi sistemami. Teoriia i prilozheniia, Nauchnaia kniga, Novosibirsk, 1999. [7] J-L Lions, E. Magenes, Non-homogeneous boundary value problems and applications, Springer-Verlag, New York, 1972. |