An asymptotic formula for the capacity of a condenser when all its plates are degenerate |
Dubinin V.N. |
2023, issue 2, P. 184-189 DOI: https://doi.org/10.47910/FEMJ202316 |
Abstract |
An asymptotic formula is given for the capacity of a generalized condenser with variable potential levels, the domain of the condenser and the degeneracy of all its plates. |
Keywords: functional asymptotic formula, conformal capacity, condenser, Neumann function. |
Download the article (PDF-file) |
References |
[1] V. N. Dubinin, “Asimptotika modulia vyrozhdaiushchegosia kondensatora i nekotorye ee primeneniia”, Zap. nauchn. sem. POMI, 237 (1997), 56–73. [2] D. Karp, “Capacity of a condenser whose plates are circular arcs”, Complex Variables, Theory and Application, 50:2 (2005), 103–122. [3] D. Karp, E. Prilepkina, “Reduced modules with free boundary and its applications”, Ann. Acad. Sci. Fenn. Math., 34:2 (2009), 353–378. [4] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602. [5] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014. [6] K. A. Gulyaeva, S. I. Kalmykov, E. G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, Int. J. Math. Anal. (Ruse), 9 (2015), 2763–2773. [7] S. I. Kalmykov, E. G. Prilepkina, “O p-garmonicheskom radiuse Robena v evklidovom prostranstve”, Zap. nauchn. sem. POMI, 449 (2016), 196–213. [8] V. N. Dubinin, E. G. Prilepkina, “Optimal Green energy points on the circles in d-space”, Journal of Mathematical Analysis and Applications, 499:2 (2021), Article 125055. [9] E. G. Prilepkina, A. S. Afanaseva-Grigoreva, “Optimal discrete Neumann energy in a ball and an annulus”, Siberian Electronic Mathematical Reports, 19:1 (2022), 109–119. [10] S. R. Nasyrov, V. Z. Nguen, “Asimptotika vneshnego konformnogo modulia chetyrekhstoronnika pri ego rastiazhenii”, Izv. vuzov. Matem., 5 (2023), 89–95. [11] F. G. Avkhadiev, I. R. Kaiumov, S. R. Nasyrov, “Ekstremal'nye problemy v geometricheskoi teorii funktsii”, Uspekhi matematicheskikh nauk, 78:2(470) (2023), 3–70. [12] Laura Abatangelo, Corentin L?ena, and Paolo Musolino, “Asymptotic behavior of generalized capacities with applications to eigenvalue perturbations: the higher dimensional case”, 2023, arXiv: 2305.06953 [math.AP]. [13] V. N. Dubinin, V.Iu. Kim, “O kondensatorakh s peremennymi plastinami, urovniami potentsiala i oblast'iu zadaniia”, Dal'nevost. matem. zhurn., 22:1 (2022), 55–60. |