Far Eastern Mathematical Journal

To content of the issue


Singularities of quasi-linear differential equations


Remizov A. O.

2023, issue 1, P. 85-105
DOI: https://doi.org/10.47910/FEMJ202308


Abstract
We study solutions of quasi-linear ordinary differential equations of the second order at their singular points, where the coefficient of the second-order derivative vanishes. Either solutions entering a singular point with definite tangential direction (proper solutions) or those without definite tangential direction (oscillating solutions) are considered. It is shown that oscillating solutions generically do not exist, and proper solutions enter a singular point in strictly definite tangential directions. A local representation for proper solutions in a form similar to Newton-Puiseux series is obtained.

Keywords:
singular points, normal forms, resonances, invariant manifolds, oscillating solutions.

Download the article (PDF-file)

References

[1] A. F. Filippov, “Edinstvennost' reshenija sistemy differencial'nyh uravnenij, ne razreshennyh otnositel'no proizvodnyh”, Differenc. uravn., 41:1 (2005), 87–92.
[2] R. Lamour, R. Marz, C. Tischendorf, Differential-algebraic equations. A projector based analysis, Springer, Berlin, 2013.
[3] J. Sotomayor, M. Zhitomirskii, “Impasse singularities of differential systems of the form A(x)x’ = F(x)”, J. Differ. Equations, 169:2 (2001), 567–587.
[4] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, “Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals”, SIAM J. Math. Anal., 46 (2014), 3390–3425.
[5] L. V. Lokutsievskiy, M. I. Zelikin, “The analytical solution of Newton’s aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary”, ESAIM, Control Optim. Calc. Var., 26:paper 15 (2020), 36 p.
[6] A. V. Aminova, N. A.-M. Aminov, “Proektivnaja geometrija sistem differencial'nyh uravnenij vtorogo porjadka”, Matem. sb., 197:7 (2006), 3–28.
[7] V. A. Yumaguzhin, “Differential invariants of second order ODEs. I”, Acta Appl. Math., 109:1 (2010), 283–313.
[8] A. O. Remizov, “Geodezicheskie na dvumernyh poverhnostjah s psevdorimanovoj metrikoj: osobennosti smeny signatury”, Matem. sb., 200:3 (2009), 75–94.
[9] A. O. Remizov, “O geodezicheskih v metrikah s osobennostjami tipa Klejna”, UMN, 65:1 (2010), 187–188.
[10] A. O. Remizov, “On the local and global properties of geodesics in pseudo-Riemannian metrics”, Differ. Geom. Appl., 39 (2015), 36–58.
[11] A. O. Remizov, F. Tari, “Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics”, Geom. Dedicata, 185:1 (2016), 131–153.
[12] N. G. Pavlova, A. O. Remizov, “A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces”, Singularities and foliations. Geometry, topology and applications, Springer Proc. Math. Stat.. V. 222, Springer, Cham, 2018, 135–155.
[13] N. G. Pavlova, A. O. Remizov, “Zavershenie klassifikacii tipichnyh osobennostej geodezicheskih potokov v metrikah dvuh klassov”, Izv. RAN. Ser. matem., 83:1 (2019), 119–139.
[14] A. Honda, K. Saji, K. Teramoto, “Mixed type surfaces with bounded Gaussian curvature in three-dimensional Lorentzian manifolds”, Adv. Math., 365:Article ID 107036 (2020), 46 p.
[15] I. A. Bogaevskij, D. V. Tunickij, “Osobennosti mnogoznachnyh reshenij kvazilinejnyh giperbolicheskih sistem”, Trudy MIAN, 308 (2020), 76–87.
[16] A. D. Brjuno, Lokal'nyj metod nelinejnogo analiza differencial'nyh uravnenij, Nauka, M., 1979.
[17] A. D. Brjuno, “Asimptotiki i razlozhenija reshenij obyknovennogo differencial'nogo uravnenija”, UMN, 59:3 (2004), 31–80.
[18] A. A. Davydov, “Normal'naja forma differencial'nogo uravnenija, ne razreshennogo otnositel'no proizvodnoj, v okrestnosti ego osoboj tochki”, Funkc. analiz i ego pril., 19:2 (1985), 1–10.
[19] A. A. Davydov, G. Ishikawa, S. Izumiya, W.-Z. Sun, “Generic singularities of implicit systems of first order differential equations on the plane”, Japanese J. Math. 3rd Ser., 3:1 (2008), 93–119.
[20] S. Izumiya, W.-Z. Sun, “Singularities of solution surfaces for quasilinear first-order partial differential equations”, Geom. Dedicata, 64:3 (1997), 331–341.
[21] S. Izumiya, F. Tari, “Self-adjoint operators on surfaces with singular metrics”, JDCS, 16:3 (2010), 329–353.
[22] M. Lange-Hegermann, D. Robertz, W. M. Seiler, M. Seiss, “Singularities of algebraic differential equations”, Adv. Appl. Math., 131:Article ID 102266 (2021), 56 p.
[23] J. Liang, “A singular initial value problem and self-similar solutions of a nonlinear dissipative wave equation”, J. Differ. Equations, 246:2 (2009), 819–844.
[24] L. Ortiz-Bobadilla, E. Rosales-Gonz ?alez, S. M. Voronin, “Analytic classification of foliations induced by germs of holomorphic vector fields in (Cn, 0) with non-isolated singularities”, JDCS, 25:3 (2019), 491–516.
[25] A. O. Remizov, “Multidimensional Poincar ?e construction and singularities of lifted fields for implicit differential equations”, J. Math. Sci., 151:6 (2008), 3561–3602.
[26] A. O. Remizov, “Geodesics in generalized Finsler spaces: singularities in dimension two”, J. Singul., 14 (2016), 172–193.
[27] W. M. Seiler, M. Seiss, “Singular initial value problems for scalar quasi-linear ordinary differential equations”, J. Differ. Equations, 281 (2021), 258–288.
[28] R. Ghezzi, A. O. Remizov, “On a class of vector fields with discontinuities of divide-by-zero type and its applications to geodesics in singular metrics”, JDCS, 18:1 (2012), 135–158.
[29] V. I. Arnol'd, Ju. S. Il'jashenko, “Obyknovennye differencial'nye uravnenija.”, Itogi nauki i tehniki. Sovrem. probl. mat. Fundam. napravl., 1, VINITI, M., 1985, 7–140.
[30] M.W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lect. Notes Math., 583, Springer-Verlag, Berlin, 1977.
[31] V. S. Samovol, “Jekvivalentnost' sistem differencial'nyh uravnenij v okrestnosti osoboj tochki”, Tr. MMO, 44 (1982), 213–234.
[32] V. S. Samovol, “Kriterij C1-gladkoj linearizacii avtonomnoj sistemy v okrestnosti nevyrozhdennoj osoboj tochki”, Matem. zametki, 49:3 (1991), 91–96.
[33] R. Roussarie, “Mod`eles locaux de champs et de formes”, Asterisque, 30 (1975), 1–181.
[34] N. G. Pavlova, A. O. Remizov, “Giperbolicheskie polja Russari s vyrozhdennoj kvadratichnoj chast'ju”, UMN, 76:2 (2021), 183–184.
[35] N. G. Pavlova, A. O. Remizov, “Smooth local normal forms of hyperbolic Roussarie vector fields”, Moscow Math. J., 21:2 (2021), 413–426.
[36] Ju. S. Il'jashenko, S. Ju. Jakovenko, “Konechno-gladkie normal'nye formy lokal'nyh semejstv diffeomorfizmov i vektornyh polej”, UMN, 46:1 (1991), 3–39.

To content of the issue