Far Eastern Mathematical Journal

To content of the issue


On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $, having a 5-dimensional abelian ideal


Loboda A. V., Akopyan R. S., Krutskikh V. V.

2023, issue 1, P. 55-80
DOI: https://doi.org/10.47910/FEMJ202306


Abstract
In connection with the problem of describing holomorphically homogeneous real hypersurfaces in $ \Bbb C^4 $ we study in this article the 7-dimensional orbits of real Lie algebras in this space. By the well-known Morozov theorem, any nilpotent 7-dimensional Lie algebra has at least a 4-dimensional Abelian ideal. The article considers nilpotent indecomposable 7-dimensional Lie algebras containing a 5-dimensional Abelian ideal. It is proved that in the space $ \Bbb C^4 $ all the orbits of such algebras are Levi degenerate. This statement covers 73 algebras from the complete list of 149 indecomposable 7-dimensional nilpotent Lie algebras.

Keywords:
homogeneous manifold, holomorphic function, vector field, Lie algebra, Abelian ideal.

Download the article (PDF-file)

References

[1] E. Cartan, “Sur la g ?eom ?etrie pseudoconforme des hypersurfaces de l’espace de deux variables complexes”, Ann. Math. Pura Appl., 11 (1933), 17–90.
[2] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82.
[3] B. Dourov, A. Medvedev, D. The, “Homogeneous Levi non-degenerate hypersurfaces in C3”, Mathematische Zeitschrift, 297 (2021), 669—709.
[4] A. V. Loboda, “Golomorfno-odnorodnye veshhestvennye giperpoverhnosti v C3”, Tr. MMO, 81:2 (2020), 61–136.
[5] B. Doubrov, J. Merker, D. The, “Classification of simply transitive Levi non-degenerate hypersurfaces in C3”, 2020, arXiv: 2010.06334v1.
[6] V. A. Le, T. A. Nguyen, T. T. C. Nguyen, T. T. M. Nguyen, T. N. Vo, “Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals”, 2021, arXiv: 2107.03990.
[7] C. Seeley, “7-dimensional nilpotent Lie algebras”, Trans. Amer. Math. Soc., 335:2 (1993), 479–496.
[8] M. P. Gong, “Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R)”, PhD thesis. Waterloo: Univ. Waterloo, 1998, http://www.semanticscholar.org/paper/f72dbfc64f72f7b3d9a740c77181ae2186d58e22.
[9] P. Ghanam, G. Thompson, “Nonsolvable subalgebras of gl(4, R)”, Journal of Mathematics, 2016 (2016), 17, https://www.hindawi.com/journals/jmath/2016/2570147/.
[10] G. M. Mubarakzjanov, “Klassifikacija veshhestvennyh struktur algebr Li pjatogo porjadka”, Izv. vuzov. Matem., 1963, No 3, 99–106.
[11] L. Shnobl, P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, Vol. 33, RI: AMS, 2014.
[12] V. I. Lagno, S. V. Spichak, V. I. Stognij, Simmetrijnyj analiz uravnenij jevoljucionnogo tipa, Moskva – Izhevsk, 2004.
[13] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 360–372.
[14] A. V. Loboda, “O zadache opisanija golomorfno odnorodnyh veshhestvennyh giperpoverhnostej 4-mernyh kompleksnyh prostranstv”, Tr. Mat. in-ta im. V. A. Steklova RAN., 331 (2020), 194–212.
[15] A. V. Loboda, V. K. Kaverina, “O vyrozhdennosti orbit razlozhimyh algebr Li”, Ufimskij matem.zhurnal, 2022, No 1, 57–83.
[16] V. V. Krutskih, A. V. Loboda,, “Komp'juternaja obrabotka dannyh v odnoj mnogomernoj matematicheskoj zadache”, Materialy mezhdunarodnoj online-konferencii "Informatika: problemy, metody, tehnologii"(IPMT-2021), OOO «VJeLBORN», Voronezh, 2021, 411–419.
[17] B. A. Dubrovin, C. P. Novikov, A. T. Fomenko, Sovremennaja geometrija, Nauka, Moskva, 1986.
[18] B. V. Shabat, Vvedenie v kompleksnyj analiz, ch.2, Nauka, Moskva, 1976.
[19] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in C3, associated with a model CR-cubic”, Geom. Anal., 20:3 (2010), 538–564.
[20] A. V. Atanov, A. V. Loboda, “Razlozhimye pjatimernye algebry Li v zadache o golomorfnoj odnorodnosti v C3”, Itogi nauki i tehn. Ser. Sovrem. mat. i ee pril. Temat. obz., VINITI, Moskva, 2019, 86—115.

To content of the issue