Wave packets in boundary problems of quantum mechanics |
Krasnyuk I. B. |
2023, issue 1, P. 34-54 DOI: https://doi.org/10.47910/FEMJ202305 |
Abstract |
System of two independent linear quantum equations with symbols representing polynoms of the \textit{n}-th order is considered. Boundary conditions are non-linear. They functionally connect amplitudes of the direct and inverse wave functions by mapping $\Phi :I \mapsto I$. It is demonstrated that 1) if mapping $ \Phi $ is linear, the amplitude of the falling wave at $ t\rightarrow\infty $ tends to zero or infinity; 2) if $ \Phi $ is nonlinear but single-valued, at $ t\rightarrow\infty $, the amplitude of the falling wave tends to a double-periodic – constant function with one singular point per a period; 3) if $ \Phi $ is multi-valued, asymptotically periodic --- constant distributions of square amplitude of the wavefunction with finite or infinite number of singularities per a period are possible. The limiting solutions of this type we shall call distributions of pre-turbulent or turbulent type. Applications to the study of the emergence of spatial-temporal bright and dark asymptotic solitons in a limited resonator with non-linear feedback between the amplitudes of two optical beams on the resonator surface are presented. |
Keywords: linear quantum equations, boundary conditions, solitons. |
Download the article (PDF-file) |
References |
[1] V. Gijemin, S. Sternberg, Geometricheskie asimptotiki, Mir, Moskva, 1981. [2] A. S. Mishhenko, B.Ju. Sternin, V. E. Shatalov, Lagranzhevy mnogoobrazija i metod kanonicheskogo operatora, Nauka, Moskva, 1978. [3] V. P. Maslov, Kompleksnyj metod VKB v nelinejnyh uravnenijah, Nauka, Moskva, 1978. [4] R. Pezer, H. Buljan, G. Bavtal, O. Cohen, M. Segal, “Gap random-phase lattice solitons”, OSA Technical Digest, 13:13 (2005), 5013–5023. [5] A. N. Majmnstrov, “Opticheskie colitony”, Sorocovskij obrazovatel'nyj zhurnal, 1999, No 11, 97–102. [6] H. Buljan, M. Segev, M. Soljaci?, N. K. Efremidis, D. N. Christodoulides, “White-light solitons”, Opt. Lett., 28:14 (2003), 1239–1241. [7] A. N. Sharkovskij, Ju. A. Majstrenko, E.Ju. Romanenko, Raznostnye uravnenija i ih prilozhenija, Naukova dumka, Kiev, 1986. [8] E. Yu. Romanenko, A. N. Sharkovsky, “From Boundary Value Problems to Difference Equations: A Method of Investigation of Chaotic Vibrations”, Intern. J. Bif. and Chaos, 9:07 (1999), 1285–1306. [9] E. Yu. Romanenko, “Randomness in deterministic difference equations”, Journal of Difference Equations and Applications, 16:1 (2010), 243–268. [10] A. N. Sharkovsky, E. Yu. Romanenko, “Turbulence: Ideal”, Encyclopedia of Nonlinear Science, Rontedge, New York, 2005, 955–957. [11] A. Avila, M. Lyubich, W. de Melo, “Regular or stochastic dynamics in real analytic families of unimodal maps”, Inventiones mathematicae, 154 (2003), 451–550. [12] E. Yu. Romanenko, “On attractors of continuous difference equations and long-time behaviour of solutions”, J. Difference equations and Appl., 9:3-4 (2003), 263–280. [13] A. N. Sharkovsky, E. Yu. Romanenko, “Ideal turbulence: Attractors of deterministic systems may lay in the space of random fields”, Intern. J. Bif. and Chaos, 2:1 (1982), 31–36. |