Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers |
Bernik V. I., Kudin A. S., Titova A. V. |
2023, issue 1, P. 3-11 DOI: https://doi.org/10.47910/FEMJ202301 |
Abstract |
The Dirichlet box principle gives surprisingly accurate results in problems of approximation of real numbers by rational numbers, transcendental numbers by real algebraic numbers. Every polynomial taking small values at a given point $x$ also takes small values in its neighborhood. A problem of studying such neighborhoods and obtaining possible Lebesgue measure values arises frequently. In this paper we solve the problem in the p-adic case using recent results of the metric theory of Diophantine approximations. |
Keywords: Diophantine approximations, Haar measure, p-adic numbers, Dirichlet theorem. |
Download the article (PDF-file) |
References |
[1] V. G. Sprindzhuk, Problema Malera v metricheskoj teorii chisel, Moskva, 1967. [2] V. G. Sprindzhuk, Metricheskaja teorija diofantovyh priblizhenij, Moskva, 1977. [3] B. Volkmann, “The real cubic case of Mahler’s conjecture”, Mathematika, 1961. [4] V. Bernik, F. Gotze, Distribution of real algebraic numbers of arbitrary degree in short intervals. V. 79, 2015. [5] K. Mahler, “Uber das Mass der Menge aller S-Zahlen”, Mathematische Annalen, 1932. [6] V. I. Bernik, M. M. Dodson, “Metric Diophantine approximation on manifolds”, Cambridge Tracts in Math, 1999. [7] A. Khintchine, “Einige satzeuber kettenbruche, mit anwendungen auf die theorie der Diophantischen approximationen”, Mathematische Annalen, 92 (1924). [8] V. I. Bernik, “O tochnom porjadke priblizhenija nulja znachenijami celochislennyh mnogochlenov”, Acta Arithmetica, 53 (1989). [9] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 1999. [10] V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 2002. [11] V. Bernik, D. Kleinbock, G. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 2001. [12] Y. Bugeaud, “On the approximation to algebraic numbers by algebraic numbers”, Cambridge Tracts in Math, 2004. [13] V. V. Beresnevich, V. I. Bernik, E. I. Kovalevskaya, “On approximation of p-adic numbers by p-adic algebraic numbers”, Journal of Number Theory, 111 (2005). [14] V. I. Bernik, I. L. Morockaja, “Diofantovy priblizhenija v Qp i razmernost' Hausdorfa”, Vesci AN BSSR. Ser. fiz.-mat. navuk, 1986. [15] V. I. Bernik, I. A. Korljukova, A. S. Kudin, A. V. Titova, “Celochislennye mnogochleny i teorema Minkovskogo o linejnyh formah”, Vestnik Grodnenskogo gosudarstvennogo universiteta imeni Janki Kupaly, 2022. |