Penalty method to solve an optimal control problem for a quasilinear parabolic equation |
A.Yu. Chebotarev, N.M. Park, P.R. Mesenev, A.E. Kovtanyuk |
2022, issue 2, P. 158-163 DOI: https://doi.org/10.47910/FEMJ202217 |
Abstract |
An optimal control problem for a quasilinear parabolic equation simulating the radiative and conductive heat transfer in a bounded three-dimensional domain under constraints on the solution in a given subdomain is considered. The solvability of the optimal control problem is proved. An algorithm for solving the problem, based on the penalty method, is proposed. |
Keywords: Non-linear PDE system, radiative heat transfer, optimal control, penalty method |
Download the article (PDF-file) |
References |
[1] W. S. J. Malskat, A. A. Poluektova, C. W. M. Van der Geld, H. A. M. Neumann, R. A. Weiss, C. M. A. Bruijninckx, M. J. C. Van Gemert, “Endovenous laser ablation (EVLA): A review of mechanisms, modeling outcomes, and issues for debate", Lasers Med. Sci.., 29, (2014), 393-403. [2] A. E. Kovtanyuk, A.Yu. Chebotarev, A. A. Astrakhantseva, A. A. Sushchenko, “Optimal control of endovenous laser ablation", Opt. Spectrosc., 128:8, (2020), 1508-1516. [3] A. E. Kovtanyuk, A.Yu. Chebotarev, A. A. Astrakhantseva, “Inverse extremum problem for a model of endovenous laser ablation", J. Inv. Ill-Posed Probl., 29:3, (2021), 467-476. [4] A. Chebotarev, A. Kovtanyuk, N. Park, P. Mesenev, “Optimal control with phase constraints for a quasilinear endovenous laser ablation model", Proceedings of the International Conference Days on Diffraction 2021, 2021, 103-108. [5] A. Kovtanyuk, A. Chebotarev, A. Degtyareva, N. Park, “Mathematical and computer modeling of endovenous laser treatment", CEUR Workshop Proceedings, 2837, (2021), 13-23. |