Far Eastern Mathematical Journal

To content of the issue


Jackson-Stechkin Inequality and Values of Widths of Some Classes of Functions in $L_2$


Shabozov M. Sh., Palavonov K.K.

2022, issue 1, P. 125-137
DOI: https://doi.org/10.47910/FEMJ202213


Abstract
The sharp values of extremal characteristic of special form for classes $L_{2}^{(r)}$, $(r\in\mathbb{Z}_{+})$ containing not only averaged module of continuity but also the averaged with weight $u(t-u)/t$, $0\le u\le t$ of given modulus continuity is calculated. The obtained result is the spreading of well-known S. B. Vakarchuk theorem about averaged module of continuity. For the given characteristic of smoothness, is given an application for the solution of one extremal problem and the values of $n$-widths for some classes of functions in $L_2$ is calculated.

Keywords:
best approximations, generalized modulus of continuity, Steklov functions, extreme characteristic, $n$-widths

Download the article (PDF-file)

References

[1] Z. Ditzian, V. Totik, Moduli of smoothness, NY: Springer-Verlag Springer set. Comput. Math., Berlin, 1987.
[2] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomial'nykh operatorov v prostranstvakh Lp, (0[3] S. B. Vakarchuk, A. N. Shchitov, “Nailuchshie polinomial'nye priblizheniia v L2 i poperechniki nekotorykh klassov funktsii”, Ukr. mat. zhurn., 56:11 (2004), 1458–1466.
[4] S. N. Vasil'ev, “Tochnoe neravenstvo Dzheksona–Stechkina v L2 s modulem nepreryvnosti, porozhdennymi proizvol'nym konechno-raznostnym operatorom s postoiannymi koeffitsientami”, Dokl. RAN., 385:1 (2002), 11–14.
[5] A. I. Kazko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona s obobshchennym modulem nepreryvnosti”, Mat. zametki, 73:5 (2003), 783–788.
[6] A. V. Ivanov, V. I. Ivanov, “Optimal'nye argumenty v neravenstve Dzheksona v prostranstve L2 (Rd ) so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348.
[7] M. K. Potapov, “O svoistvakh i o primenenii v teorii priblizhenii odnogo svoistva operatorov obobshchennogo sdviga”, Mat. zametki, 69:3 (2001), 412–426.
[8] N. P. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaia teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108.
[9] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniia 2? ? periodicheskikh funktsii summami Fur'e v prostranstve L2 (2?)” , Mat. zametki, 76:6 (2004), 803–811.
[10] S. B. Vakarchuk, V. I. Zabutnaia, “Neravenstva tipa Dzheksona-Stechkina dlia spetsial'nykh modulei nepreryvnosti i poperechniki funktsional'nykh klassov v prostranstve L2”, Mat. zametki, 92:4 (2012), 497–514.
[11] M. Sh. Shabozov, K. Tukhliev, “Nailuchshie polinomial'nye priblizheniia i poperechniki nekotorykh funktsional'nykh klassov v L2”, Mat. zametki, 94:6 (2013), 908–917.
[12] M. Sh. Shabozov, G. A. Iusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniia poperechnikov nekotorykh klassov funktsii v L2”, Sibir. matem. zhurnal., 52:6 (2011), 1414–1427.
[13] K. Tukhliev, “Nailuchshie priblizheniia i poperechniki nekotorykh klassov svertok v L2”, Trudy IM i M UrO RAN, 22:4 (2016), 284–294.
[14] A. Pinkus, n-Widths in Approximation Theory, Berlin: Springer-Verlag. Heidelberg. New York. Tokyo, 1985, 252.
[15] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976.

To content of the issue