Jackson-Stechkin Inequality and Values of Widths of Some Classes of Functions in $L_2$ |
Shabozov M. Sh., Palavonov K.K. |
2022, issue 1, P. 125-137 DOI: https://doi.org/10.47910/FEMJ202213 |
Abstract |
The sharp values of extremal characteristic of special form for classes $L_{2}^{(r)}$, $(r\in\mathbb{Z}_{+})$ containing not only averaged module of continuity but also the averaged with weight $u(t-u)/t$, $0\le u\le t$ of given modulus continuity is calculated. The obtained result is the spreading of well-known S. B. Vakarchuk theorem about averaged module of continuity. For the given characteristic of smoothness, is given an application for the solution of one extremal problem and the values of $n$-widths for some classes of functions in $L_2$ is calculated. |
Keywords: best approximations, generalized modulus of continuity, Steklov functions, extreme characteristic, $n$-widths |
Download the article (PDF-file) |
References |
[1] Z. Ditzian, V. Totik, Moduli of smoothness, NY: Springer-Verlag Springer set. Comput. Math., Berlin, 1987. [2] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomial'nykh operatorov v prostranstvakh Lp, (0 [3] S. B. Vakarchuk, A. N. Shchitov, “Nailuchshie polinomial'nye priblizheniia v L2 i poperechniki nekotorykh klassov funktsii”, Ukr. mat. zhurn., 56:11 (2004), 1458–1466. |