Far Eastern Mathematical Journal

To content of the issue


Initial-boundary value problem for the equations of radiative heat transfer with Fresnel conjugation conditions


Chebotarev A. Yu.

2022, issue 1, P. 100-106
DOI: https://doi.org/10.47910/FEMJ202210


Abstract
Non-local in time, unique solvability of an inhomogeneous initial-boundary value problem for a nonlinear system simulating complex heat transfer with conditions of reflection and refraction on the discontinuity surfaces of the refractive index is proved.

Keywords:
quasi-static equations of complex heat transfer, Fresnel conjugation conditions, inhomogeneous initial-boundary value problem, non-local unique solvability

Download the article (PDF-file)

References

[1] Alexander Yu. Chebotarev and Gleb V. Grenkin and Andrey E. Kovtanyuk and Nikolai D. Botkin and Karl-Heinz Ho?mann, “Di?usion approximation of the radiative- conductive heat transfer model with Fresnel matching conditions”, Communications in Nonlinear Science and Numerical Simulation, 57 (2018), 290–298.
[2] A. Yu. Chebotarev, “Inhomogeneous Boundary Value Problem for Complex Heat Transfer Equations with Fresnel Matching Conditions”, Di?erential Equations, 56:12 (2020), 1613–1618.
[3] A. Y. Chebotarev, A. E. Kovtanyuk, “Quasi-static di?usion model of complex heat transfer with reflection and refraction conditions”, J. Math. Anal. Appl., 507:125745 (2022).
[4] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP1 -System”, Comm. Math. Sci., 5:4 (2007), 951–969.
[5] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Ho?mann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815.
[6] A. E. Kovtaniuk, A. Iu. Chebotarev, “Statsionarnaia zadacha slozhnogo teploobmena” , Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 711–719; Comput. Math. Math. Phys., 54:4 (2014), 719–726.
[7] A. E. Kovtaniuk, A. Iu. Chebotarev, “Statsionarnaia zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsial'nye uravneniia, 50:12 (2014), 1590–1597.
[8] Andrey E. Kovtanyuk, Alexander Yu. Chebotarev, Nikolai D. Botkin, and Karl-Heinz Ho?mann, “Theoretical analysis of an optimal control problem of conductive convective radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–528.
[9] A. E. Kovtanyuk, A. Y. Chebotarev, N. D. Botkin, K.-H. Ho?mann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247-252.
[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and Karl-Heinz Ho?man, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015), 776–784.
[11] A. Chebotarev, A. Kovtanyuk, G. Grenkin, N. Botkin, and K.-H. Ho?man, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260.
[12] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Ho?mann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative e?ects”, J. Math. Anal. Appl., 439 (2016), 678–689.
[13] Alexander Yu. Chebotarev, Andrey E. Kovtanyuk, Gleb V. Grenkin, Nikolai D. Botkin, and Karl Heinz Ho?mann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289:10 (2016), 371–380.
[14] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519.
[15] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Ho?mann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744.
[16] Alexander Yu. Chebotarev and Andrey E. Kovtanyuk and Nikolai D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Communications in Nonlinear Science and Numerical Simulation, 75 (2019), 262–269.
[17] A. Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 737–744.
[18] G. V. Grenkin, A. Iu. Chebotarev, “Obratnaia zadacha dlia uravnenii slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 59:8 (2019), 1420–1430.
[19] A. G. Kolobov, T. V. Pak, A. Iu. Chebotarev, “Statsionarnaia zadacha radiatsionnogo teploobmena s granichnymi usloviiami tipa Koshi”, Zh. vychisl. matem. i matem. fiz., 59:7 (2019), 1258–1263.
[20] A. Iu. Chebotarev, “Obratnaia zadacha dlia uravnenii slozhnogo teploobmena s frenelevskimi usloviiami sopriazheniia”, Zh. vychisl. matem. i matem. fiz., 61:2 (2021), 303–311.
[21] A.A. Amosov, “Unique Solvability of a Nonstationary Problem of Radiative - Conductive Heat Exchange in a System of Semitransparent Bodies”, Russian J. of Math. Phys., 23 (2016), 309-334.
[22] A.A. Amosov, “Unique Solvability of Stationary Radiative-Conductive Heat Transfer Problem in a System of Semitransparent Bodies”, Journal of Mathematical Sciences, 224:5 (2017), 618–646.
[23] A.A. Amosov, “Nonstationary problem of complex heat transfer in a system of semitransparent bodies with boundary-value conditions of di?use reflection and refraction of radiation”, Journal of Mathematical Sciences, 233:6 (201), 777-806.
[24] A.A. Amosov, N.E. Krymov, “On a Nonstandard Boundary Value Problem Arising in Homogenization of Complex Heat Transfer Problems”, Journal of Mathematical Sciences, 244:3 (2020), 357–377.

To content of the issue