Polynomial Somos sequences II |
Romanov M. A. |
2022, issue 1, P. 91-99 DOI: https://doi.org/10.47910/FEMJ202209 |
Abstract |
It was proved in [1] that for $k=4,5,6,7$ the elements of the Somos-$k$ sequence defined by the recurrence
$$S_k(n+k)S_k(n)=\sum_{1\leqslant i\leqslant k/2}\alpha_i x_0\dots x_{k-1}S_k(n+k-i)S_k(n+i)$$ and initial values $S_k(j)=x_j$ ($j=0,\dots,k-1$) are polynomials in the variables $x_0,\dots,x_{k-1}$. The unit powers of the variables $x_j$ in the factors \linebreak $\alpha_i x_0\dots x_{k-1}$ can be reduced. In this paper, we find the smallest values of these powers, at which the polynomiality of the above sequence is preserved. |
Keywords: Somos sequences, ultradiscrete sequences |
Download the article (PDF-file) |
References |
[1] V. A. Bykovskii, M. A. Romanov, “Polinomial'nye posledovatel'nosti Somosa”, Funkts. analiz i ego pril., 55:1 (2021), 20–32. [2] S. Fomin and A. Zelevinsky, “The Laurent Phenomenon”, Adv. Appl. Math., 28 (2002), 119–144. [3] R. Robinson, “Periodicity of Somos sequences”, Proceedings of the AMS, 116:3 (1992), 613–619. [4] Allan P. Fordy and Andrew Hone, “Symplectic Maps from Cluster Algebras”, Symmetry, Integrability and Geometry: Methods and Applications, 7 (2011), 091, 12 pp. [5] Yoichi Nakata, “The solution to the initial value problem for the ultradiscrete Somos-4 and 5 equations”, 2017, 13 pp., arXiv: 1701.04262. |