Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation |
Podgaev A. G., Prudnikov V. Ya., Kulesh T. D. |
2022, issue 1, P. 61-75 DOI: https://doi.org/10.47910/FEMJ202206 |
Abstract |
We prove results related to the study of the solvability of a problem with an unknown boundary by compactness methods. Relative compactness theorems are used, which were obtained in previous publications, adapted to the study of problems like the Stefan problem with an unknown boundary. In previous papers, for the equation considered here, we studied the initial-boundary problem in a non-cylindrical domain with a given curvilinear boundary of class $W^1_2$ and the problem for which, under the condition on the unknown boundary, the coefficient latent specific heat of fusion (in contrast to the Stefan problem, considered given here) was an unknown quantity. Therefore, in some places calculations will be omitted that almost completely coincide with those set out in the works listed below. The proposed technique can be applied in more general situations: more phase transition boundaries, or more complex nonlinearities. As a result, global over time, the regular solvability of a single-phase axisymmetric Stefan problem for a quasilinear three-dimensional parabolic equation with unknown boundary from the class $W^1_4$, is proved. |
Keywords: Stefan problem, relative compactness, non-cylindrical domain, unknown boundary |
Download the article (PDF-file) |
References |
[1] A. M. Borodin, “Zadacha Stefana”, Ukraїns'kii matematichnii visnik, 8 (2011), 17–54. [2] A. M. Meirmanov, O. A. Gal'tseva, V. E. Sel'demirov, “O sushchestvovanii obobshchennogo resheniia v tselom po vremeni odnoi zadachi so svobodnoi granitsei”, Matem. zametki, 107:2 (2020), 229–240. [3] J. Bollati, A. D. Tarzia, “One-phase Stefan problem with a latent heat depending on the position of the free boundary and its rate of change”, Electronic Journal of Di?erential Equations, 2018:10 (2018), 1–12. [4] V. N. Belykh, “Korrektnost' odnoi nestatsionarnoi osesimmetrichnoi zadachi gidrodinamiki so svobodnoi poverkhnost'iu”, Sibirskii matematicheskii zhurnal, 58:4 (2017), 728–744. [5] Zh. O. Takhirov, R. N. Turaev, “Nelokal'naia zadacha Stefana dlia kvazilineinogo parabolicheskogo uravneniia”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:3 (2012), 8–16. [6] J. Bollati, D.A. Tarzia, “Explicit solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face”, Communications in Applied Analysis, See http://arxiv.org/abs/1610.09338 2017. [7] F. Li, D. Lu, “Rasprostranenie reshenii dlia uravneniia diffuzii reaktsii so svobodnymi granitsami v periodicheskoi srede”, Elektron. J. Differentsial'nye uravneniia, 2018, № 185, 1–12. [8] D. A. Tarzia, “A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems”, MAT-Serie A, 2000, No 2, 1–297. [9] A. G. Podgaev, “Razreshimost' osesimmetrichnoi zadachi dlia nelineinogo parabolicheskogo uravneniia v oblastiakh s netsilindricheskoi ili neizvestnoi granitsei. I”, Cheliab. fiz.-matem. zhurnal, 5:1 (2020), 44–55. [10] A. G. Podgaev, “O teoremakh kompaktnosti, sviazannykh s zadachami s neizvestnoi granitsei”, Matematicheskie zametki SVFU, 28:4 (2021), 71–89. [11] D. Gilbarg, N. Trudinger, Ellipticheskie differentsial'nye uravneniia s chastnymi proizvodnymi vtorogo poriadka, Nauka, M., 1989. [12] O. A. Ladyzhenskaia, N. N. Ural'tseva, Lineinye i kvazilineinye uravneniia ellipticheskogo tipa, Nauka, M., 1973. [13] A. M. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, 1992. |