Far Eastern Mathematical Journal

To content of the issue

On the condensers with variable plates, potential levels and domain of definition

Dubinin V., Kim V. Yu.

2022, issue 1, P. 55-60
DOI: https://doi.org/10.47910/FEMJ202205

The asymptotic formula is obtained for the capacity of a generalized condenser when parts of its plates contract to prescribed points. We consider condenser with variable potential levels and a set of definition that tends to a predetermined domain.

asymptotic formula, conformal capacity, condenser, Green’s function

Download the article (PDF-file)


[1] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fiz-matlit, M., 1962.
[2] L. V. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta math., 83:1/2 (1950), 101–129.
[3] V. K. Kheiman, Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960.
[4] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniia, Izd-vo inostr. lit., M., 1962.
[5] V. G. Kuz'mina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50.
[6] A. Iu. Solynin, “Moduli i ekstremal'no-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86.
[7] V. N. Dubinin, “Asimptotika modulia vyrozhdaiushchegosia kondensatora i nekotorye ee primeneniia”, Zap. nauchn. sem. POMI, 237 (1997), 56–73.
[8] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014.
[9] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular map-pings”, Math. Nachr., 283:11 (2010), 1589–1602.
[10] V. N. Dubinin, “Asimptotika emkosti kondensatora s peremennymi urovniami potentsiala”, Sib. matem. zhurn., 61:4 (2020), 796–802.
[11] M. Schi?er, “Some recent developments in the theory of conformal mapping”, Appendix to: R. Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, 1950, 249–323.

To content of the issue