Far Eastern Mathematical Journal

To content of the issue


The dynamics of “imperial tails” on the example of coronavirus infection


Guzev M. A., Nikitina E. Y.

2022, issue 1, P. 38-50
DOI: https://doi.org/10.47910/FEMJ202203


Abstract
In the paper the dynamics of rank distributions is discussed on the example of a study of the incidence of COVID-19 in Primorsky Krai in 2020-2022, taking into account the periodicity of the morbidity process, and an explanation of the nature of “imperial tails” is given. It is shown that the chosen modeling method is within the framework of the general trend of research into the development of the pandemic process, and the found characteristic parameters are close to classical estimates.

Keywords:
rank distributions, Zipf's Law, imperial tail

Download the article (PDF-file)

References

[1] F. Auerbach, “The Law of Population Concentration”, Petermann’s Geographical Communications, 1913, http://hdl.handle.net/11858/00-001M-0000-002A-4926-E.
[2] A. J. Lotka, “The Frequency Distribution of Scientific Productivity”, Journal of the Washington Academy of Sciences, 16 (1926).
[3] H. A. Gleason, “The Significance of Raunkiaer’s Law of Frequency”, Ecology, 10 (4) (1929), doi:10.2307/1931149.
[4] B. Gutenberg and C. F. Richter, “Frequency of earthquakes in California”, Bull. Seismol. Soc. Am., 34 (1944).
[5] G. K. Zipf, Human Behavior and the Principle of Least E?ort, Addison-Wesley, Cambridge, Mass., 1949.
[6] A. Clauset, C. R. Shalizi and M. E. J. Newman, “Power-law distributions in empirical data”, E-print: SIAM Rev., 2009, No 51, http://epubs.siam.org/doi/10.1137/070710111.
[7] S. T. Piantadosi, “Zipf ’s word frequency law in natural language: A critical review and future directions”, Psychonomic Bulletin & Review, 21(5) (2014), doi:10.3758/s13423-014-0585-6.
[8] R. B. Lees, “Logic, language and information theory by Leo Apostel”, Benoit Mandelbrot and Albert Morf Source: Language, 35(2) (1959), https://doi.org/10.2307/410536.
[9] A. N. Kolmogorov, “Tri podkhoda k opredeleniiu poniatiia "kolichestvo informatsii”, Probl. peredachi inform., 1(1) (1965).
[10] Iu. A. Shreider, “O vozmozhnosti teoreticheskogo vyvoda statisticheskikh zakonomernostei teksta (k obosnovaniiu zakona Tsipfa)”, Probl. peredachi inform., 3:1 (1967).
[11] V. Dunaev, “O rangovykh raspredeleniiakh v klassifikatsii” , Nauchno-tekhnicheskaia informatsiia, 2 (1984), http://dunaevv1.narod.ru/other/classrunk.htm.
[12] V. P. Maslov, “On a General Theorem of Set Theory Leading to the Gibbs, Bose-Einstein, and Pareto Distributions as well as to the Zipf-Mandelbrot Law for the Stock Market”, Mathematical Notes, 2005, No 78(5).
[13] V. P. Maslov, Kvantovaia ekonomika, M.: Nauka, 2006.
[14] V. P. Maslov, “Zakon «otsutstviia predpochteniia» i sootvetstvuiushchie raspredeleniia v chastotnoi teorii veroiatnostei”, Mat.zametki, 80:2 (2006).
[15] V. P. Maslov, T. V. Maslova, “ O zakone Tsipfa i rangovykh raspredeleniiakh v lingvistike i semiotike”, Mat.zametki, 80:5 (2006).
[16] M. A. Guzev, E. Yu. Nikitina, E. V. Chernysh, “V.P. Maslov’s Approach to the Analysis of Rank Distributions”, Russian Journal of Mathematical Physics, 28:1 (2021).
[17] M. A. Guzev, N. N. Kradin, E. Yu. Nikitina, “The Imperial Curve of Large Polities”, Social Evolution & History, 16:2 (2017).
[18] O. I. Krivorot'ko, S. I. Kabanikhin, “Matematicheskie modeli rasprostraneniia COVID-19”, ArXiv.org, 2112.05315v2 (2022), https://arxiv.org/pdf/2112.05315.pdf.
[19] B. Blasius, “Power-law distribution in the number of confirmed COVID-19 cases”, Chaos, 30 (2020), https://doi.org/10.1063/5.0013031.

To content of the issue