Far Eastern Mathematical Journal

To content of the issue

Heat flow calculation for a harmonic model of a one-dimensional crystal

Guzev M. A., Dmitriev A. A.

2022, issue 1, P. 28-37
DOI: https://doi.org/10.47910/FEMJ202202

A one-dimensional non-dissipative harmonic chain of particles is considered, located between two thermal reservoirs. Using the fundamental solution of the one-dimensional harmonic model, an analytical representation is obtained for the discrete expression of the heat flux. Time averaging was performed, which allows taking into account the stationary characteristics of the heat transfer process. It is shown that the averaged heat flux includes two physically different components. The first one is proportional to the temperature difference between the reservoirs and characterizes the heat transfer along the chain. The second one determines the initial value of the flow when the temperatures of the tanks are equal.

harmonic chain, fundamental solution, time averaging, heat flux

Download the article (PDF-file)


[1] G. E. Uhlenbeck, L. S. Ornstein, “On the Theory of the Brownian Motion”, Phys. Rev., 36(1930), 823–841.
[2] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Physics Reports, 377 (2003), 1–80, doi:10.1016/S0370-1573(02)00558-6.
[3] F. Bonetto, J. L. Lebowitz, J. Lukkarinen, “Fourier’s Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs”, Journal of Statistical Physics, 116 (2004), 783—813, doi:10.1023/B:JOSS.0000037232.14365.10.
[4] A. Dhar, R. Dandekar, “Heat transport and current fluctuations in harmonic crystals”, Physica A: Statistical Mechanics and its Applications, 418 (2015), 49–64.
[5] Guzev M. A., Gorbunov A. V., “Struktura teplovogo potoka dlia chastits Ornshteina-Ulenbeka odnomernoi garmonicheskoi tsepochki”, Dal'nevostochnyi matem. zhurnal, 21:2 (2021), 180–193.
[6] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Academic PressSpringer Verlag, Berlin, Heidelberg, 1991.
[7] F. Bonetto, J.L. Lebowitz, L. Rey-Bellet, “Fourier’s law: A challenge to theorists”, Mathematical Physics, 2000, 128–150.
[8] A. M. Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle”, DAN, 464:2 (2015), 162–166.
[9] M. A. Guzev, A. A. Dmitriev, “Razlichnye formy predstavleniia resheniia odnomernoi garmonicheskoi modeli kristalla”, Dal'nevostochnyi matem. zhurnal, 17:1 (2017), 30–47.

To content of the issue