Far Eastern Mathematical Journal

To content of the issue


Periodic ultradiscrete plane transformation with a period of 12


Monina M.D.

2021, issue 2, P. 231–233
DOI: https://doi.org/10.47910/FEMJ202119


Abstract
V.A. Bykovskii constructed a new periodic ultradiscrete plane transformation with a period of 12. In his work only the idea of proving this periodicity was proposed. We provide a complete and detailed proof of this statement.

Keywords:
nonlinear recurrent sequences, tropical sequences, nonlinear periodic transformations

Download the article (PDF-file)

References

[1] V.A. Bykovskii, “Periodicheskie ul'tradispersnye preobrazovaniia ploskosti”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniia, 500 (2021), 53–55.
[2] A. Nobe, “Ultradiscrete QRT maps and tropical elliptic curves”, J. Journal of Physics A: Mathematical and Theoretical, 41:12 (2008), 12 pp.
[3] D. Takahashi, J. Satsuma, “A Soliton Cellular Automaton”, Journal of the Physical Society of Japan, 59:10 (1990), 3514–3519.
[4] J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro, M. Torii, “Toda-type cellular automaton and its N-soliton solution”, Physics Letters A, 225:4–6 (1997), 287–295.
[5] Chris Ormerod, An ultradiscrete QRT mapping from tropical elliptic curves, arXiv:math-ph/0609060v1, 22 Sep 2006.

To content of the issue