Far Eastern Mathematical Journal

To content of the issue


On two relations characterizing the golden ratio


Zhukova A.A., Shutov A.V.

2021, issue 2, P. 194–202
DOI: https://doi.org/10.47910/FEMJ202116


Abstract
V.G. Zhuravlev found two relations associated with the golden ratio: $\tau=\frac{1+\sqrt{5}}{2}$: $[([i\tau]+1)\tau]=[i\tau^2]+1$ and $[[i\tau]\tau]+1=[i\tau^2]$. We give a new elementary proof of these relations and show that they give a characterization of the golden ratio. Further we consider satisfability of our relations for finite sets of $i$-s and establish some forcing property for this situation.

Keywords:
golden ratio, Fibonacci numbers

Download the article (PDF-file)

References

[1] V.G. Zhuravlev, “Odnomernye razbieniia Fibonachchi”, Izvestiia RAN. Seriia matematicheskaia, 71:2 (2007), 89–122.
[2] A.V. Shutov, “Perenormirovki vrashchenii okruzhnosti”, Chebyshevskii sbornik, 5:4 (2004), 125–143.
[3] R. Grekhem, D. Knut, O. Patashnik, Konkretnaia matematika. Osnovanie informatiki, BINOM. Laboratoriia znanii, M., 2009.
[4] E. Zeckendorf, “Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bulletin de la Societe Royale des de Liege, 41 (1972).

To content of the issue