Covariant hydrodynamics of Hamiltonian systems |
Gudimenko A.I. |
2021, issue 2, P. 166–179 DOI: https://doi.org/10.47910/FEMJ202114 |
Abstract |
The theory of hydrodynamic reduction of non-autonomous Hamiltonian mechanics (V. Kozlov, 1983) is presented in the geometric formalism of bundles over the time axis R. In this formalism, time is one of the coordinates, not a parameter; the connections describe reference frames and velocity fields of mechanical systems. The equations of the theory are presented in a form that is invariant with respect to time-dependent coordinate transformations and the choice of reference frames. |
Keywords: covariant formalism, time-dependent Hamiltonian mechanics, multidimensional hydrodynamics |
Download the article (PDF-file) |
References |
[1] V.V. Kozlov, “Gidrodinamika gamil'tonovykh sistem”, Vestnik Mosk. Un-ta. Ser. Matem., Mekhan., 1983, № 6, 10–22. [2] B.V. Kozlov, Obshchaia teoriia vikhrei, Institut komp'iuternykh issledovanii, M., Izhevsk, 2013, Pervoe izdanie knigi vyshlo v 1998. [3] G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scienti?c, Singapore, 1995. [4] G. Sardanashvily, “Hamiltonian time-dependent mechanics”, J. Math. Phys., 39:5 (1998), 2714–2729. [5] G. Giachetta, L. Mangiarotti, and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scienti?c, Singapore, 1997. [6] N. Roman-Roy, “Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories”, SIGMA, 5 (2009), 100. [7] J. Berra-Montiel et al, “A review on geometric formulations for classical ?eld theory: the Bonzom–Livine model for gravity”, Class. Quantum Grav., 38:135012 (2021). [8] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989. [9] I. Kolar, P. Michor, and J. Slovak, Natural operations in di?erential geometry, Springer- Verlag, Berlin, Heidelberg, New York, 1993. [10] G. Sardanashvily, Advanced Di?erential Geometry for Theoreticians, LAP LAMBERT Academic Publishing, 2013. [11] D. Krupka, Introduction to Global Variational Geometry, Atlantis Press, 2015. [12] G. Giachetta, L. Mangiarotti, and G. Sardanashvily, Geometric Formulation of Classical and Quantum Mechanics, World Scienti?c, Singapore, 2011. [13] G. Sardanashvily, Noether’s Theorems. Applications in Mechanics and Field Theory, Atlantis Press, 2016. [14] N. Steenrod, The topology of ?bre bundles, Princeton University Press, Princeton, New Jersey, 1951. [15] M. de Leon, J. Mar?n-Solano, and J.C. Marrero, “A geometrical approach to classical ?eld theories: a constraint algorithm for singular theories”, New Developments in Di?erential Geometry, eds. L. Tamassi and J. Szenthe, Kluwer Acad. Publ., Dordrecht, 1996. [16] E. Kartan, Integral'nye invarianty, URSS, M., 1998. [17] L. Mangiarotti and M. Modugno, “Fibered spaces, jet spaces and connections for ?eld theories”, Proc. Int. Meeting on Geometry and Physics (Florence, 1982), eds. M. Modugno, Pitagora Editrice, Bologna, 1983, 135–165. [18] J.E. Marsden, T. Ratiu, and R. Abraham, Manifolds, Tensor Analysis, and Applications, Springer, 2007. |