Far Eastern Mathematical Journal

To content of the issue


The Fekete-Szego problem by a variational method


Borisova Y.V., Kolesnikov I.A., Kopanev S.A., Sadritdinova G.D.

2021, issue 2, P. 133–150
DOI: https://doi.org/10.47910/FEMJ202112


Abstract
The article is devoted to the well-known Fekete and Szego problem. The paper investigate the problem in sufficient detail using some new observations by the classical method of internal variations, developed at the Tomsk School of Complex Analysis. One particular case is considered. We carried out complete qualitative analysis of the functional-differential equation relative boundary mapping. We completely solved the problem for the real parameter.

Keywords:
extremal problem, variational method, Fekete and Szego problem, functional

Download the article (PDF-file)

References

[1] M. Fekete, G. Szego, “Eine Bemerkung u?ber ungerade schlichte Funktionen”, J.London Math. Soc., 8:2 (1933), 85–89.
[2] P.L. Duren, Univalent functions, Springer-Verlag, 1983.
[3] G.M. Goluzin, “Nekotorye voprosy teorii odnolistnykh funktsii”, Tr. MIAN SSSR, 27 (1949), 3–110.
[4] J.A. Jenkins, “On certain coe?cients of univalent functions”, Analytic Functions. Princeton University Press, 1960, 159–194.
[5] A. P?uger, “The Fekete-Szego inequality for complex parameters”, Complex Variables, 7 (1986), 149–160.
[6] I.A. Aleksandrov, “Ekstremal'nye svoistva klassa S(w0)”, Tr. Tomskogo un-ta., 169 (1963), 24–58.
[7] A. P?uger, “The Fekete-Szego inequality by a variational method”, Ann. Acad. Sci. Fenn., Ser. A.I. Math., 10 (1985), 447–454.
[8] A. P?uger, “On the Functional a3 ? ?a22 in the Class S”, Complex Variables, 10 (1988), 83–95.
[9] H. Siejka, O. Tammi, “On maximizing a homogeneous functional in the class of bounded univalent functions”, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 6 (1981), 273–288.
[10] J.A. Hummel, “Extremal problems in the class of starlike functions”, Proc. Amer. Math. Soc., 11:5 (1960), 741–749.
[11] R.R. London, “Fekete-Szego inequalities for close-to-convex functions”, Proc. Amer. Math. Soc., 117 (1993), 947–950.
[12] B.S. Mehrok, Singh H., “A Coe?cient Inequality for a Certain Class of Analytic Functions”, Int. Journal of Math. Analysis, 5:7 (2011), 311–318.
[13] B. Bhowmik, S. Ponnusamy, K.-J. Wirths, “On the Fekete–Szego problem for concave univalent functions”, J Math. Anal. Appl., 373 (2011), 432–438.
[14] Q. Xu, T. Liu, X. Liu, “Fekete and Szego problem in one and higher dimensions”, Sci. China Math., 61 (2018), 1775–1788.
[15] N.A. Lebedev, Ob oblastiakh znachenii funktsionalov, zadannykh na klassakh analiticheskikh funktsii, Doktorskaia dissertatsiia, Leningradskii universitet, 1955.
[16] Ia. V. Borisova, I. A. Kolesnikov, S. A. Kopanev, “ O malykh variatsionnykh formulakh”, Vestn. Tomsk. gos. un–ta. Matem. i mekh., 2017, № 49, 5–15.
[17] I.A. Aleksandrov, I.A. Kolesnikov, S.A. Kopanev, L.S. Kopaneva, Metod vnutrennikh variatsii v teorii odnolistnykh otobrazhenii, Izd-vo Tom. un-ta, Tomsk, 2017.
[18] B.A. Fuks, V.I. Levin, Funktsii kompleksnogo peremennogo i nekotorye ikh prilozheniia. Spetsial'nye glavy., Izd-vo tekhniko-teoreticheskoi lit-ry, Moskva, 1951.

To content of the issue