On the value of the widths of some classes of functions from L_2 |
Langarshoev M.R. |
2021, issue 1, P. 61-70 DOI: https://doi.org/10.47910/FEMJ202106 |
Abstract |
In this paper we find sharp inequalities of Jackson-Stechkin type between the best approximations of periodic differentiable functions by trigonometric polynomials and generalized moduli of continuity of m-th order in the space L_2. The exact values of various n-widths of classes of functions from L_2 defined by the generalized modus of continuity of the $r$-th derivative of the function f are calculated. |
Keywords: best approximation, trigonometric polynomials, generalized modulus of continuity of higher order, n-widths |
Download the article (PDF-file) |
References |
[1] E. A. Storozhenko, V. G. Krotov, P. Osval'd, “ Priamye i obratnye teoremy tipa Dzheksona v prostranstvakh Lp , 0 < p < 1” , Matem. sbornik, 98:140 (1975), 395–415. [2] K. V. Runovskii, “ Priamaia teorema o priblizhenii “uglom” v prostranstve Lp , 0 < p < 1” , Matem. zametki, 52:5 (1992), 93–96. [3] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniia poperechnikov funktsional'nykh klassov iz L2”, Matem. zametki, 78:5 (2005), 792–796. [4] S.B. Vakarchuk, V. I. Zabutnaia, “Tochnoe neravenstvo tipa Dzheksona – Stechkina v L2 i poperechniki funktsional'nykh klassov”, Matem. zametki, 86:3 (2009), 328–336. [5] M.Sh. Shabozov, G. A. Iusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniia poperechnikov nekotorykh klassov funktsii v L2 ” , Sib. matem. zhurnal, 52:6 (2011), 1414–1427. [6] M.Sh. Shabozov, S. S. Khorazmshoev, “ Nailuchshie polinomial'nye priblizheniia differentsiruemykh periodicheskikh funktsii i znacheniia poperechnikov klassov funktsii, zadavaemykh obobshchennymi moduliami nepreryvnosti v L2 ” , Izv. AN RT. Otd. fiz.-mat., khim., geol. i tekhn. n., 1:142 (2011), 7–19. [7] S. B. Vakarchuk, V. I. Zabutnaia, “Neravenstvo tipa Dzheksona-Stechkina dlia spetsial'nykh modulei nepreryvnosti i poperechniki funktsional'nykh klassov v prostranstve L2”, Matem. zametki, 92:4 (2012), 497–514. [8] S.B. Vakarchuk, V. I. Zabutnaia, “Neravenstvo mezhdu nailuchshimi polinomial'nymi priblizheniiami i nekotorymi kharakteristikami gladkosti v prostranstve L2 i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238. [9] S.B. Vakarchuk, A.N. Shchitov, “Nailuchshie polinomial'nye priblizheniia v L2 i poperechniki nekotorykh klassov funktsii”, Ukr. matem. zhurnal., 56:11 (2004), 1458–1466. [10] V.M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976. [11] A. Pinkus, n-Widths in Approximation Theory, Springer-Verlag, Heidelberg, New York, Tokyo, Berlin, 1985. |