On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain |
P. V. Vinogradova, A. G. Zarubin |
2002, issue 1, P. 3–17 |
Abstract |
This article investigates the boundary value problem for the quasilinear parabolic equations. The existence of solutions in Sobolev's spaces $W^{2m,1}_p$ is proved, as well as the convergent of the approximate solutions, built according to Galerkin's method, to the exact solution with respect to the norm of the space $W^{2m,1}_2$. The estimates of the convergence for some types of nonlinean are obtained. |
Keywords: |
Download the article (PDF-file) |
References |
[1] S. G. Krejn, G. I. Laptev, “Abstraktnaya sxema rassmotreniya parabolicheskix zadach v necilindricheskix oblastyax”, Differencial'nye uravneniya, 5:8 (1969), 1458–1469 [2] S. G. Krejn, “Povedenie reshenij e'llipticheskix zadach pri variacii oblasti”, Studia mathematica, 31 (1968), 411–424. [3] N. E. Istomina, A. G. Podgaev, “O razreshimosti zadachi dlya kvazilinejnogo vyrozhdayushhegosya parabolicheskogo uravneniya v oblasti s necilindricheskoj granicej”, Dal'nevostochnyj matematicheskij zhurnal, 1:1 (2000), 63–73. [4] P. Cannarsa, G. Da Prato, S.-P. Zolezio, “The damped wave equations in a moving domain”, Differential Equations, 85:1 (1990), 1–16. [5] A. I. Kozhanov, “Zamechanie ob odnoj zadache vyazkouprugosti i svyazannom s nej vozmushhennom volnovom uravnenii v necilindricheskix oblastyax”, Neklassicheskie uravneniya matem. fiziki, NGU, Novosibirsk, 1993, 99–103. [6] A. I. Kozhanov, “On a nonlinear equation of viscoelqsticity in noncylindric domains”, Matematicheskie zametki, 5, № 2, YaGU, 1998, 107–117. [7] A. I. Kozhanov, N. A. Lar'kin, “O razreshimosti kraevyx zadach dlya sil'no nelinejnyx uravnenij vyazkouprugosti v necilindricheskix oblastyax”, Matematicheskie zametki, 6, № 1, YaGU, 1999, 36–45 [8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linejnye i kvazilinejnye uravneniya parabolicheskogo tipa, Nauka, M., 1967. [9] V. A. Solonnikov, “Ob ocenkax v $L_p$ reshenij e'llipticheskix i parabolicheskix sistem”, Tr. MIAN SSSR, SII, 1967, 137–160 [10] V. P. Glushko, S. G. Krejn, “Neravenstva dlya norm proizvodnyx v prostranstvax $L_p$ s vesom”, Sib. mat. zhurn., 1:3 (1960), 343–382 [11] P. Oya, “O sxodimosti i ustojchivosti metoda Galerkina dlya parabolicheskix uravnenij s differenciruemymi operatorami”, Trudy po matematike i mexanike, XVII, № 374, Tart. Gos. Un-t, Tartu, 1975, 194–209 [12] Yu. A. Dubinskij, “Kvazilinejnye e'llipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Uspexi matem. nauk, XXIII:1(139) (1968), 45–90 |