Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary |
Zhiltsov A.V., Namm R.V. |
2019, issue 2, P. 173–184 |
Abstract |
The problem of one-sided contact of two elastic bodies is considered. This is a static displacement problem. The bodies are influenced by bulk and surface forces, in the contact area there are friction forces. The substantiation of using the method of modified Lagrange functionals is given. The method of successive displacement is applied to the solution of a finite-dimensional analog of a task. To solve a finite-dimensional problem, the pointwise relaxation method is used. The results of numerical calculations are given. |
Keywords: contact problem, augmented Lagrangian method, finite element method, duality methods, method of successive approximations, contact friction, iterative proximal regularization |
Download the article (PDF-file) |
References |
[1] J. Jarusek, “Contact problems with bounded friction. Coercive case”, Czechoslovak Mathematical Journal., 33:2, (1983), 237-261. [2] J. Jarusek, “Contact problems with bounded friction. Semicoercive case”, Czechoslovak Mathematical Journal., 34:4, (1984), 619-629. [3] I. Glavachek, Ia. Gaslinger, I. Nechas, Ia. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986. [4] A.S. Kravchuk, Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997. [5] N. Kikuchi, T. Oden, Contact problem in elasticity: a study of variational inequalities and ?nite element methods, SIAM, Philadelphia., 1988. [6] R.V. Namm, G.I. Tsoi, “Metod posledovatel'nykh priblizhenii dlia resheniia kvazivariatsionnogo neravenstva Sin'orini”, Izv. vuzov. Matem., 2017, № 7, 44–52. [7] E.M. Vikhtenko, G.S. Vu, R.V. Namm, “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zh. vychisl. matem. i matem. fiz., 10:8, (2010), 1357–1366. [8] A.V. Zhil'tsov, “Metod mnozhitelei Lagranzha dlia resheniia zadachi ob odnostoronnem kontakte uprugikh tel s ogranichennoi zonoi kontakta”, Matematicheskie zametki SVFU, 23:4, (2016), 99–113. [9] E.M. Vikhtenko, N.N. Maksimova, R.V. Namm, “Modifitsirovannye funktsionaly Lagranzha dlia resheniia variatsionnykh i kvazivariatsionnykh neravenstv mekhaniki”, Avtomat. i telemekh., 2012, № 4, 3–17. [10] E.M. Vikhtenko, R.V. Namm, “Iterativnaia proksimal'naia reguliarizatsiia modifitsirovannogo funktsionala Lagranzha dlia resheniia polukoertsitivnogo kvazivariatsionnogo neravenstva Sin'orini”, Zhurn. vychisl. matem. i matem. fiz., 48:9, (2008), 1571–1579. [11] I. Konnov, J. Gwinner, “A strongly convergent combined relaxation method in Hilbert spaces”, Numerical Funct. Anal. Optim., 35:(7–9), (2014), 1066-1077. [12] R. Glovinski, Zh.-L. Gaslinger, R. Tremol'er, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979. [13] A.Ia. Zolotukhin, R.V. Namm, A.V. Pachina, “Priblizhennoe reshenie variatsionnoi zadachi Mosolova i Miasnikova s treniem na granitse po zakonu Kulona”, Sib. zhurn. vychisl. matem., 4:2, (2001), 163–177. |