Stabilization of vortex flows through an annular domain |
Morgulis A.B. |
2019, issue 1, P. 108-113 |
Abstract |
In this note, we consider the planar nonstationary through-flow problem for ideal incompressible and homogeneous fluid in an annular domain and describe the behavior of its solutions when $t\to +\infty$. |
Keywords: inviscid fluid flow, vortex flow, through flow, stabilization |
Download the article (PDF-file) |
References |
[1] G.V. Alekseev, “O stabilizatsii reshenii dvumernykh uravnenii dinamiki ideal'noi zhidkosti”, Prikl. mekh. tekhn. fiz., 102:2, (1977), 85–92. [2] A.B. Morgulis, V.I. Iudovich, “Asimptoticheskaia ustoichivost' statsionarnogo rezhima protekaniia ideal'noi neszhimaemoi zhidkosti”, Sib. matem. zhurn., 43:4, 840–857. [3] A. Morgulis, V. Yudovich, “Arnold’s method for asymptotic stability of steady inviscid incompressible flow through a fixed domain with permeable boundary”, Chaos, 12:2, 356–371. [4] A.B. Morgulis, “Non-linear Asymptotic Stability for the Through-Passing Flows of Inviscid Incompressible Fluid”, Asymptotic Analysis, 66, 229–247. [5] A.B. Morgulis, “Variatsionnye printsipy i ustoichivost' otkrytykh techenii ideal'noi neszhimaemoi zhidkosti”, Cibirskie elektronnye matematicheskie izvestiia, 14, 218–251. [6] V.I. Iudovich, “Dvumernaia nestatsionarnaia zadacha o protekanii ideal'noi neszhimaemoi zhidkosti cherez zadannuiu oblast'”, Matem. sbornik, 64 (106):4, (1964), 562–588. [7] G.V. Alekseev, “O razreshimosti neodnorodnoi kraevoi zadachi dlia dvumernykh nestatsionarnykh uravnenii dinamiki ideal'noi zhidkosti”, Dinamika sploshnoi sredy, 24, (1976), 15–35. [8] C. Bardos, “Existence et Unicite de la Solution de l’Equation d’Euler en Dimention Deux”, J. Math. Analysis Appl., 40, (1972), 769–790. |