Far Eastern Mathematical Journal

To content of the issue


On the conformal metric of annulus in the n-dimensional Euclidean space


Prilepkina E.G., Afanaseva-Grigoreva A.S.

2018, issue 2, P. 233-241


Abstract
It is shown by the methods of symmetrization that the geodesic with respect to the conformal metric of annulus in the Euclidean space is located into a two-dimensional sector. As a consequence, the geodesic is established in the case of points located on symmetric sphere of the annulus. Exact lower bounds are proved for the conformal metric of the annulus. A distortion theorem for quasi-regular mappings is given.

Keywords:
conformal module, modulii of curve families, quasiregular mappings, annulus, distortion theorem

Download the article (PDF-file)

References

[1] M. Vuorinen, “Conformal geometry and quasiregular mappings”, Lecture Notes in Mathematics, Springer-Verlag, 1988.
[2] I.S. Gal, “Conformally invariant metrics and uniform structures”, Indag. Math., 22, (1960), 218–244.
[3] V.N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoy teorii funktsiy kompleksnogo peremennogo, Dal’nauka, Vladivostok, 2009.
[4] A.Yu. Solynin, “Continuous symmetrization via polarization”, Algebra i analiz, 24:1, (2012), 157–222.
[5] J. Sarvas, “Symmetrization of condensers in n-space”, Ann. Acad. Sci. Fenn, Ser AI, 522, (1972), 1–44.
[6] E.G. Akhmedzyanova, “Simmetrizatsiya otnositel’no gipersfery”, Dal’nevost. matem. sb., 1995, № 1, 40–50.
[7] V.N. Dubinin, “Preobrazovaniye kondensatorov v prostranstve”, Dokl. AN SSSR, 296, (1987), 18–20.
[8] E.V. Kostyuchenko, E.G. Prilepkina, “O polyarizatsii otnositel’no gipersfery”, Dal’nevost. matem. zhurn., 5:1, (2004), 22–29.
[9] A.V. Sychev, Moduli i prostranstvennyye kvazikonformnyye otobrazheniya, Nauka, Moskva, 1983.
[10] B.E. Levitskiy, “K-simmetrizatsiya i ekstremal’nyye kol’tsa”, V sb. "Matematicheskiy analiz", 1971, 35–40.
[11] M.A. Lavrent’yev, B.V. SHabat, Metody teorii funktsiy kompleksnogo peremennogo, Nauka, Moskva, 1973.

To content of the issue