The exact formula for the temperature of a one-dimensional crystal |
Guzev M.A. |
2018, issue 1, P. 39-47 |
Abstract |
An analytical representation is obtained for the temperature in a one-dimensional harmonic crystal. It is shown that for a large number of particles, the leading contribution to the temperature distribution does not depend on the particle number. |
Keywords: one-dimensional harmonic crystal, molecular dynamics, temperature |
Download the article (PDF-file) |
References |
[1] M.P. Allen, A.K. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987. [2] A.M. Krivcov, “Kolebanija jenergij v odnomernom kristalle”, Doklady Akademii nauk, 458:3, (2014), 279–281. [3] M.A. Guzev, A.A. Dmitriev, “Oscilljacionno-zatuhajuwee povedenie temperatury v kristalle”, Dal'nevost. matem. zhurn., 17:2, (2017), 170–179. [4] Dzh.V. Gibbs, Termodinamika. Statisticheskaja mehanika, Nauka, Moskva, 1982. [5] G.N. Vatson, Teorija beselevyh funkcij. CHast' pervaja, Izdatel'stvo inostrannoj literatury, Moskva, 1949. [6] A.P. Prudnikov, JU.A. Brychkov, O.I. Marichev, Integraly i rjady. JElementarnye funkcii, v 3 t., t. 1, Fizmatlit, Moskva, 2002. [7] A.P. Prudnikov, JU.A. Brychkov, O.I. Marichev, Integraly i rjady. Special'nye funkcii, v 3 t., t. 2, Fizmatlit, Moskva, 2003. [8] M.V. Fedorjuk, Asimptotika: integraly i rjady (SMB), Nauka GRFML, Moskva, 1987. |