Far Eastern Mathematical Journal

To content of the issue


On the n-harmonic radius of domains in the n-dimensional Euclidean space


Prilepkina E.G.

2017, issue 2, P. 246-256


Abstract
We extend a classical result by Lavrent’ev concerning the product of the conformal radii of planar non-overlapping domains to the case of domains in the n-dimensional Euclidean space. The conformal radius is then replaced by the n-harmonic Levitskii radius and the non-overlapping condition is replaced by a weaker geometric condition. The proofs are based on the technique of modulii of curve families. Conformal invariance of the module plays an important role in the proofs. Using the same method, we extend a classical result of Kufarev concerning the product of the conformal radii of planar non-overlapping domains in the unit disk. In addition, an inequality for n-harmonic radius of a star-shaped domain has been proved.

Keywords:
conformal radius, harmonic radius, modulii of curve families, extremal decompositions, star-shaped domain

Download the article (PDF-file)

References

[1] V.N. Dubinin, Emkosti kondensatorov i simmetrizatsiia v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dal'nauka, Vladivostok, 2009.
[2] V.N. Dubinin, “Neravenstvo Krausa dlia mnogolistnykh funktsii”, Matem. zametki, 102:4, (2017), 559-564.
[3] B.E. Levitskii, “Privedennyi p-modul' i vnutrennii p-garmonicheskii radius”, Dokl. AN SSSR., 316:4, (1991), 812–815.
[4] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy, hyperbolic radius and n+2 Liouvilles equations ?U = 0 and ?U = U n?2”, SIAM Review, 38:2, (1996), 191–238.
[5] W. Wang, “N-Capacity, N-harmonic radius and N-harmonic transplantation”, J. Math. Anal. Appl., 327:1, (2007), 155–174.
[6] V.N. Dubinin, E.G. Prilepkina, “Ob ekstremal'nom razbienii prostranstvennykh oblastei”, Analiticheskaia teoriia chisel i teoriia funktsii. 15, Zap. nauchn. sem. POMI, 254, (1998), 95–107.
[7] K.A. Gulyaeva, S.I. Kalmykov, E.G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, International Journal of Mathematical Analysis, 9:56, (2015), 2763–2773.
[8] S. Kalmykov, E Prilepkina, “Extremal decomposition problems for p-harmonic radius”, Analysis Mathematica, 43:1, (2017), 49–65.
[9] C.I. Kalmykov, E.G. Prilepkina, “O p-garmonicheskom radiuse Robena v evklidovom prostranstve”, Zap. nauchn. sem. POMI, 449, (2016), 196–213.
[10] V.N. Dubinin, “Capacities and geometric transformations of subsets in n-space”, Geom. Funct. Anal., 3, (1993), 342–369. 11. A.Yu. Solynin, “Continuous symmetrization via polarization”, Algebra i analiz, 24:1, (2012), 157–222.
[12] J. Sarvas, “Symmetrization of condensers in n-space”, Ann. Acad. Sci. Fenn, Ser AI, 522, (1972), 1–44.
[13] E.V. Kostiuchenko, E.G. Prilepkina, “O poliarizatsii otnositel'no gipersfery”, Dal'nevost. matem. zhurn., 5:1, (2004), 22–29.
[14] B. Fuglede, “Extremal length and functional completion”, Acta Mathematica, 98:1, (1957), 171–219.
[15] M. Vuorinen, “Conformal geometry and quasiregular mappings”, Lecture Notes in Mathematics, Springer-Verlag, 1988.
[16] V.A. Shlyk, “O ravenstve p-emkosti i p-modulia”, Sib. matem. zhurn., 34:6, (1993), 216–221.
[17] V.G. Maz'ia, Prostranstva S.L. Soboleva, Iz-vo Leningradskogo universiteta, Leningrad, 1985.

To content of the issue