The solvability of the boundary value problem for the system of thermoelasticity equations in space |
Sulyandziga E.P. |
2017, issue 1, P. 98-109 |
Abstract |
The proposed and substantiated boundary value problem for the linearized three-dimensional system of thermoelasticity equations describing the deformation of a solid body because of its temperature. The existence of weak solutions was proved. |
Keywords: setting the boundary value problem, system of thermoelasticity, the existence of solutions, estimation of approximate solutions, thermal expansion |
Download the article (PDF-file) |
References |
[1] A.D. Kovalenko, Termouprugost', Izdatel'skoe ob"edinenie “Vishcha shkola”, Kiev, 1975. [2] P.V. Bazylev, A.V. Izotov, A.I. Kondrat'ev, V.A. Lugovoi, K.N. Okishev, “Gosudarstvennyi pervichnyi etalon edinits skorostei rasprostraneniia prodol'nykh, sdvigovykh i poverkhnostnykh ul'trazvukovykh voln v tverdykh sredakh GET 1989-2012.” , Izmeritel'naia tekhnika, 7:7, (2013), 6–10. [3] A.P. Filin, Prikladnaia mekhanika tverdogo deformiruemogo tela: soprotivlenie materialov s elementami teorii sploshnykh sred i stroitel'noi mekhaniki, Nauka, M., 1978. [4] V. Novatskii, Dinamicheskie zadachi termouprugosti, Mir, M., 1970. [5] A.A. Samarskii, P.N. Vabishchevich, Vychislitel'naia teploperedacha, Editorial URSS, M., 2003. [6] E.P. Suliandziga, “O kraevykh zadachakh dlia odnomernoi sistemy uravnenii termouprugosti”, Vestnik TOGU, 3(34), (2014), 29–38. [7] Y. Sun, D. Fang, M. Saka and A.K. Soh, “Laser-Induced Vibrations of Micro-Beams under Different Boundery Conditions”, International Journal of Solids and Structures, 45:7–8, (2008), 1993–2013. [8] H.M. Youssef, A.S. Al-Felali, “Generalized Thermoelasticity Problem of Material Subjected to Thermal Loading Due to Laser Pulse”, Applied Mathematics, 3, (2012), 142–146. [9] Zh.-L. Lions, Nekotorye metody resheniia nelineinykh kraevykh zadach, Mir, M., 1972. [10] O.A. Ladyzhenskaia, Matematicheskie voprosy dinamiki viazkoi neszhimaemoi zhidkosti, Nauka, M., 1970. |