Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative |
Kozhanov A.I., Potapova S.V. |
2017, issue 1, P. 48-58 |
Abstract |
In this paper we investigated the regular solvability of conjugate problem (generalized diffraction problem) for third order equation with multiple characteristics and alternating function on the highest derivative. This function has a discontinuity of the first kind and changes sign when passing the point of discontinuity. The existence and uniqueness of regular solutions are proved by the regularization and continuation methods. |
Keywords: equations with multiple characteristics, equations with changing time direction, discontinuous coefficients, conjugate problem, regular solutions, existence and uniqueness |
Download the article (PDF-file) |
References |
[1] L. Cattabriga, Annali della scuola normale Superiore di pisa e mat, 13:2, (1956), 163–203. [2] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a characteristiche multiple”, Rend. Semin. Mat. Univ. Padova, 3, (1961), 1–45. [3] T.D. Dzhuraev, Kraevye zadachi dlia uravneniia smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1986. [4] S. Abdinazarov, “Obshchie kraevye zadachi dlia uravneniia tret'ego poriadka s kratnymi kharakteristikami”, Differentsial'nye uravneniia, 17, (1981), 3–12. [5] M. Mascarello, L. Rodino, Partial di?erentional equations with multiple characteristics, Wiley, Berlin, 1997. [6] M. Mascarello, L. Rodino, M. Tri, “Partial di?erentional operators with multiple symplectic characteristics”, Partial di?erential equations and spectral theory, ed. M. Demuth, B.-W. Schulze, Birkhauser, Basel, 2001, 293–297. [7] L. Rodino, A. Oliaro, “Solvability for semilinear PDE with multiple characteristics”, Evolution equations, v. 60, ed. R. Picard, M. Reissig, W. Zajaczkowski, Banach Center Publ., Warsaw, 2003, 295–303. [8] A.I. Kozhanov, “O razreshimosti nelokal'noi po vremeni zadachi dlia odnogo uravneniia s kratnymi kharakteristikami”, Mat. zametki IaGU, 8:2, (2001), 27–40. [9] A.I. Kozhanov, “Composite Type Equations and Inverse Problems”, Utrecht, the Netherlands, VSP, 1999. [10] A. R. Khashimov, A.M. Turginov, “O nekotorykh nelokal'nykh zadachakh dlia uravneniia tret'ego poriadka s kratnymi kharakteristikami”, Mat. zametki SVFU, 21:1, (2014), 69–74. [11] G.G. Doronin, N.A. Larkin, E. Tronco, “Exponential Decay of Weak Solutions for the Zakharov-Kuznetsov Equation”, Nonclassical equations of mathematical physics. 1ed. Novosibirsk, 446, (2012), 5–13. [12] A.M. Abdrakhmanov, A.I. Kozhanov, “Zadacha s nelokal'nym granichnym usloviem dlia odnogo klassa uravnenii nechetnogo poriadka”, Izvestiia vuzov. Matematika, 5, (2007), 3–12. [13] N.A. Larkin, “Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains”, J. Math. Anal. Appl., 297:2, (2004), 169–185. [14] B.A. Bubnov, “Generalized boundary value problems for Korteweg–de Vries equation in bounded domains”, Di?erential Equations, 15, (1979), 17–21. [15] B.B. Khablov, “O nekotorykh korrektnykh postanovkakh granichnykh zadach dlia uravneniia Kortevega de Friza, Preprint In-ta matem. SO AN SSSR, Novosibirsk, 1979. [16] A.V. Faminskii, N.A. Larkin, “Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval”, Electronic Journal of Di?. Equations, 2010, 1–20. [17] A.V. Faminskii, N.A. Larkin, “Odd-order quasilinear evolution equations posed on a bounded interval”, Bol. Soc. Paran. Mat., 28:1, (2010), 67–77. [18] Sh. Cui, Sh. Tao, “Strichartz estimates for dispersive equations and solvability of Kawahara equation”, J. Math. Anal. Appl., 304, (2005), 683–702. [19] N.A. Larkin, “Correct initial boundary value problems for dispersive equations”, J. Math. Anal. Appl., 344:2, (2008), 079–1092. [20] S. Abdinazarov, A. Khashimov, “Kraevye zadachi dlia uravneniia s kratnymi kharakteristikami i razryvnymi koeffitsientami”, Uz. mat. zhurn., 1993, № 1, 3–12. [21] A. Khashimov, “Ob odnoi zadache dlia uravneniia smeshannogo tipa s kratnymi kharakteristikami”, Uz. mat. zhurn., 1995, № 2, 95–97. [22] V.I. Antipin, “Razreshimost' kraevoi zadachi dlia uravneniia tret'ego poriadka s meniaiushchimsia napravleniem vremeni”, Matematicheskie zametki IaGU, 18:1, (2011), 8–15. [23] V.I. Antipin, “Razreshimost' kraevoi zadachi dlia operatorno-differentsial'nykh uravnenii smeshannogo tipa”, Sibirskii matematicheskii zhurnal, 54:2, (2013), 245–257. [24] S.G. Pyatkov, S. Popov, V.I. Antipin, “On solvability of boundary value problem for kinetic operator-di?erential equations”, Integral Equation and Operator Theory, 80:4, (2014), 557–580. [25] M. Gevrey, “Sur les equations aux derivees partielles du type parabolique”, J. Math. Appl., 9:6, (1913), 305–478. [26] N.A. Lar'kin, V.A. Novikov, N.N. Ianenko, Nelineinye uravneniia peremennogo tipa, Nauka, Novosibirsk, 1983. [27] S.A. Tersenov, Parabolicheskie uravneniia s meniaiushchimsia napravleniem vremeni, Nauka, Novosibirsk, 1985. [28] I.E. Egorov, S.G. Piatkov, S. V. Popov, Neklassicheskie differentsial'no–operatornye uravneniia, Nauka, Novosibirsk, 2000. [29] N.V. Kislov, I.S. Pul'kin, “O sushchestvovanii i edinstvennosti slabogo resheniia zadachi Zhevre s obobshchennymi usloviiami skleiki”, Vestnik MEI, 2002, №6, 88–92. [30] I.M. Petrushko, E.V. Chernykh, “O parabolicheskikh uravneniiakh 2-go poriad+ka s meniaiushchimsia napravleniem vremeni” , Vestnik MEI, 2003, №6, 85–93. [31] R. Beals, “On an equations of mixed type from electron scattering”, J. Math. Anal. Appl., 568:1, (1977), 32–45. [32] C.E. Siewert and P.E. Zweifel, “Radiative transfer, II”, J. Math. Phys., 7, (1966), 2092–2102. [33] V.A. Trenogin, Funktsional'nyi analiz, Nauka, M., 1980. [34] S.V. Potapova, “Boundary value problems for pseudohyperbolic equations with a variable time direction”, TWMS Journal of Pure and Applied Mathematics, 3:1, (2012), 75–91. |