Far Eastern Mathematical Journal

To content of the issue


Different representations for solving one-dimensional harmonic model of a crystal


Guzev M.A., Dmitriev A.A.

2017, issue 1, P. 30-47


Abstract
One-dimensional harmonic model of an ideal crystalline system composed of particles is considered. For the potential corresponding to a pair interaction of particles with the nearest neighbors, we constructed the fundamental solution in the own basis matrix of this potential. It is shown how to write the solution using Chebyshev polynomials and Bessel functions, as well as to obtain an integral representation on the complex plane and using the Laplace transformation. The application of the results are presented for the potential matrix perturbed with respect to the diagonal elements.

Keywords:
ideal lattice model, fundamental solution, Chebyshev polynomials, Bessel functions, Laplace transform

Download the article (PDF-file)

References

[1] Mathematical Physics in One Dimension. Exactly Soluble Models of Interacting Particles. A Collection of Reprints With Introductory, ed. E.H. Lieb, D. C. Mattis, Academic Press, New York, London, 1966.
[2] Z. Rieder, J.L. Lebowitz, E. Lieb, “Properties of a Harmonic Crystal in a Stationary Nonequilibrium State”, J. Math. Phys, 8:5, (1967), 1073–1078.
[3] N. Yang, G. Zhang, B. Li, “Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires”, Nano Today, 5:2, (2010), 85–90.
[4] A.M. Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle” , DAN, 464:2, (2015), 162–166.
[5] C.W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, “Breakdown of Fourier’s Law in Nanotube Thermal Conductors”, Phys. Rev. Lett., 101:7, (2008), 1–4.
[6] S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, “Polyethylene nanofibres with very high thermal conductivities”, Nature Nanotechnology, 5, (2010), 251–255.
[7] T.K. Hsiao, H.K. Chang, S.C. Liou, M.W. Chu, S.C. Lee, C.W. Chang, “Observation of room temperature ballistic thermal conduction persisting over 8.3µm in SiGe nanowires”, Nature Nanotechnology, 8, (2013), 534–538.
[8] Schrodinger, “Zur Dynamik elastisch gekoppelter Punktsysteme”, Annalen der Physik, 349:14, (1914), 916-934.
[9] R.E. Turner, “Motion of a heavy particle in a one dimensional chain”, Physica, 24:6, (1960), 269-273.
[10] N.I. Aleksandrova, “Asymptotic formulae for the Lommel and Bessel functions and their derivatives”, R. Soc. Open Sci., 1: 140176 doi :10.1098/rsos.140176.
[11] N.I. Aleksandrova, “The discrete Lamb problem: Elastic lattice waves in a block medium”, Wave Motion, 51:5, (2014), 818-832.
[12] N.I. Aleksandrova, “Asimptoticheskoe reshenie antiploskoi zadachi dlia dvumernoi zadachi”, DAN, 455:1, (2014), 34-37.
[13] M.A. Guzev, Iu.G. Izrail'skii, M.A. Shepelov, “Molekuliarno-dinamicheskie kharakteristiki odnomernoi tochno reshaemoi modeli na razlichnykh masshtabakh” , Fizicheskaia mezomekhanika, 9:5, (2006), 53-57.
[14] M.A. Guzev, A.A. Dmitriev, N.A. Permiakov, “Struktura ostatochnogo napriazheniia v modeli molekuliarnoi dinamiki”, Dal'nevostochnyi matem. zhurnal, 8:2, (2008), 152–163.
[15] M.A. Guzev, A.A. Dmitriev, “Peremezhaemost' spektra matritsy, imeiushchei blochnuiu strukturu”, Matematika v prilozheniiakh. Vserossiiskaia konf., priurochennaia k 80-tiletiiu akad. S.K. Godunova. 20–24 iiulia 2009 g. Tez. dokl., In-t matematiki SO RAN, Novosibirsk, 2009, 98–99.
[16] M.A. Guzev, A.A. Dmitriev, “O reshenii kharakteristicheskikh uravnenii sistem, opisyvaiushchikh lineinye modeli molekuliarnoi dinamiki. II”, Sovremennye metody teorii kraevykh zadach. Materialy Voronezhskoi vesennei matem. shkoly «Pontriaginskie chteniia - XX». Tez. dokl., VGU, Voronezh, 2009, 42–43.
[17] S. Pashkovskii, Vychislitel'nye primeneniia mnogochlenov i riadov Chebysheva, «Nauka» GRFML, Moskva, 1983.
[18] G.N. Vatson, Teoriia besselevykh funktsii, Ch. I, IL, Moskva, 1949.
[19] Kh. Karslou, D. Eger, Operatsionnye metody v prikladnoi matematike, IL, Moskva, 1948.
[20] G. Beitmen, A. Erdeii, Tablitsy integral'nykh preobrazovanii, T. I, «Nauka» GRFML, Moskva, 1969.
[21] S.K. Godunov, V.S. Riaben'kii, Raznostnye skhemy. Vvedenie v teoriiu, «Nauka» GRFML, Moskva, 1977.

To content of the issue