Far Eastern Mathematical Journal

To content of the issue


Unique solvability of the subdifferential boundary value problem for the complex heat transfer equations


Chebotarev A.Yu., Grenkin G.V., Kovtanyuk A.E.

2016, issue 2, P. 229-236


Abstract
A model of the process of radiation-conductive heat transfer with the multi-valued dependence of emissivity on the radiation intensity is considered. The unique solvability of the subdifferential boundary value problem for the complex heat transfer equations in a three-dimensional domain is proved.

Keywords:
radiation heat transfer, subdifferential boundary conditions, non-local unique solvability

Download the article (PDF-file)

References

[1] Modest M.F., Radiative Heat Transfer, Academic Press, 2003.
[2] A.E. Kovtaniuk, A.Iu. Chebotarev, “Statsionarnaia zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:4 (2014), 191–199.
[3] A.E. Kovtanyuk, A.Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362.
[4] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252.
[5] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815.
[6] A.E. Kovtaniuk, A.Iu. Chebotarev, “Statsionarnaia zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsial'nye uravneniia, 50:12 (2014), 1590–1597.
[7] G.V. Grenkin, A.Iu. Chebotarev, “Ustoichivost' statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dal'nevostochnyi matematicheskii zhurnal, 14:1 (2014), 18–32.
[8] G.V. Grenkin, A.Iu. Chebotarev, “Nestatsionarnaia zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:11 (2014), 1806–1816.
[9] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Communications in Nonlinear Science and Numerical Simulation, 20:2 (2015), 776–784.
[10] G.V. Grenkin, A.Iu. Chebotarev, “Neodnorodnaia nestatsionarnaia zadacha slozhnogo teploobmena”, Sibirskie elektronnye matematicheskie izvestiia, 12:11 (2015), 562–576.
[11] G.V. Grenkin, A.Iu. Chebotarev, “Nestatsionarnaia zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Zh. vychisl. matem. fiz., 56:2 (2016), 275–282.
[12] A.A. Amosov, “Global'naia razreshimost' odnoi nelineinoi nestatsionarnoi zadachi s nelokal'nym kraevym usloviem tipa teploobmena izlucheniem”, Differentsial'nye uravneniia, 41:1 (2005), 93–104.
[13] P.-E. Druet, “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936.
[14] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29.
[15] A.A. Amosov, “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344.
[16] A.A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 164:3 (2010), 309–344.
[17] A.A. Amosov, “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 165:1 (2010), 1–41.
[18] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP1-System”, Comm. Math. Sci., 5:4 (2007), 951–969.
[19] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–528.
[20] G.V. Grenkin, “Optimal'noe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dal'nevostochnyi matematicheskii zhurnal, 14:2 (2014), 160–172.
[21] G.V. Grenkin, A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433 (2016), 1243–1260.
[22] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689.
[23] A.Yu. Chebotarev, A.E. Kovtanyuk, G.V. Grenkin, N.D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289 (2016), 371–380.
[24] G.V. Grenkin, “Algoritm resheniia zadachi granichnogo optimal'nogo upravleniia v modeli slozhnogo teploobmena”, Dal'nevostochnyi matematicheskii zhurnal, 16:1 (2016), 24–38.
[25] G.V. Grenkin, A.Iu. Chebotarev, “Upravlenie slozhnym teploobmenom pri sozdanii ekstremal'nykh polei”, Zh. vychisl. matem. fiz., 56:10 (2016), 1725–1732.
[26] Lions Zh.-L., Nekotorye metody resheniia nelineinykh kraevykh zadach, M.: Mir, 1972.
[27] A.Iu. Chebotarev, “Variatsionnye neravenstva dlia operatora tipa Nav'e-Stoksa i odnostoronnie zadachi dlia uravnenii viazkoi teploprovodnoi zhidkosti”, Matematicheskie zametki, 70:2 (2001), 296–307.

To content of the issue