Far Eastern Mathematical Journal

To content of the issue


Solutions of a functional equation concerning with trilinear differential operators


Illarionov A.A.

2016, issue 2, P. 169-180


Abstract
We solve the functional equation $$f(x+z)f(y+z)f(x+y-z)=\sum_{j=1}^m\phi_j(x,y)\psi_j(z)

Keywords:
functional equation, the Weierstrass sigma function, elliptic function, addition theorems, trilinear equations

Download the article (PDF-file)

References

[1] V.M. Bukhshtaber, D.V. Leikin, “Trilineinye funktsional'nye uravneniia”, UMN, 60:2 (2005), 151–152.
[2] V.A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniia”, Funkts. analiz i ego pril., 50:3 (2016), 34–46.
[3] E.T. Uitteker, Dzh.N. Vatson, Kurs sovremennogo analiza. T. 2, Fizmatgiz, M., 1963.
[4] S. Stoilov, Teoriia funktsii kompleksnogo peremennogo. T. 1, Izd-vo inostr. liter., M., 1962.
[5] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376.
[6] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1–2 (1997), 54–72.
[7] M. Bonk, “The addition theorem of Weierstrass’s sigma function”, Math. Ann., 298:1 (1994), 591–610.
[8] M. Bonk, “The Characterization of Theta Functions by Functional Equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55.
[9] A.A. Illarionov, “Funktsional'noe uravnenie i sigma-funktsiia Veiershtrassa”, Funkts. analiz i ego pril., 50:4 (2016), 43–54.
[10] G. Peano, “Sur le determinant wronskien”, Mathesis IX, 1889, 110–112.

To content of the issue