Duality method for solving model crack problem |
Chervyakova M.V., Namm R.V., Vikhtenko E.M. |
2016, issue 2, P. 137-146 |
Abstract |
We consider the duality method based on the use of modified Lagrangian functional for solving a model of elastic problem with a crack. An article presents the theorems, allowing to use Uzawa method for search a saddle point of the modified Lagrangian functional. The results of numerical experiments are given. |
Keywords: model problem with a crack, variational inequality, modified Lagrangian functional, Uzawa method, finite element method |
Download the article (PDF-file) |
References |
[1] V.L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M, 1983. [2] A.S. Kravchuk, Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGA-PI, M, 1997. [3] G. Diuvo, Zh.L. Lions, Neravenstva v fizike i mekhanike, Nauka, M, 1980. [4] I. Glavachek, Ia. Gaslinger, I. Nechas, Ia. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M, 1986. [5] N. Kikuchi, J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Method, SIAM Philadelphia, 1988. [6] L.A. Galin, Kontaktnye zadachi teorii uprugosti i viazkouprugosti, Nauka, M, 1980. [7] N.F. Morozov, Matematicheskie voprosy teorii treshchin, Nauka, M, 1984. [8] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton; Boston, 2000. [9] A.M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastiakh, Fizmatlit, M, 2010. [10] E.G. Gol'shtein, N.V. Tret'iakov, Modifitsirovannye funktsii Lagranzha.Teoriia i metody optimizatsii, Nauka, M, 1989. [11] K. Grossman, A.A. Kaplan, Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka. Sib. otd., Novosibirsk, 1981. [12] D. Bertsekas, Uslovnaia optimizatsiia i metody mnozhitelei Lagranzha, Radio i sviaz', M, 1987. [13] E.M. Vikhtenko, R.V. Namm, “O metode dvoistvennosti dlia resheniia model'noi zadachi s treshchinoi”, Trudy instituta matematiki i mekhaniki UrO RAN, 22:1 (2016), 36–43. [14] E.M. Vikhtenko, G. Woo, R.V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Comp. Math. and Math. Phys., 54:7 (2014), 1190–1200. |