Arithmetic essence of octuple product identity |
Romanov M.A. |
2016, issue 1, P. 69-82 |
Abstract |
In the paper a new proof of octuple product identity is offered using simple arithmetic methods. |
Keywords: octuple product identity, Liouville's identities, triple product identity, quintuple product identity |
Download the article (PDF-file) |
References |
[1] C.G.J. Jacobi, «Fundamenta nova theoriae functionum ellipticarum», Gesammelte Werke. V. 1, Berlin, 1881, 49–239. [2] C.G.J. Jacobi, «Teoriae der elliptischen Functionen aus den Eigenschaften der Thetareihen abgeleitet», Gesammelte Werke. V. 1, Berlin, 1881, 497–538. [3] C.G.J. Jacobi, Gesammelte Werke. V. 1, Berlin, 1881. [4] C.F. Gauss, Gauss Werke II, Gottingen, 1863. [5] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen. V. 1, Springer, Berlin, 2011. [6] A.O.L. Atkin, P. Swinnerton-Dyer, «Some properties of partitions», Proc. London Math. Soc. (3), 4 (1954), 84–106. [7] B. Gordon, «Some identities in combinatorial analysis», Quart. J. Math. Oxford Ser. (2), 12 (1961), 285–290. [8] G.N. Watson, «Theorems stated by Ramanujan (VII): Theorems on a continued fraction», J. London Math. Soc., 4 (1929), 39–48. [9] A.A. Kljachko, «Moduljarnye formy i predstavlenija simmetricheskih grupp», Zap. nauchn. sem. LOMI, 116 (1982), 174–185. [10] N.V. Budarina, V.A. Bykovskij, «Arifmeticheskaja priroda tozhdestv dlja trojnogo i pjatikratnogo proizvedenij», Dal'nevost. matem. zhurn., 11:2 (2011), 140–148. [11] H.M. Weber, Lehrbuch der Algebra. V. 3, Braunschweig, 1908. [12] A. Vejl', Jellipticheskie funkcii po Jejzenshtejnu i Kronekeru, Mir, Moskva, 1978. [13] V.G. Kac, P. Chen, Kvantovyj analiz, MCNMO, Moskva, 2005, 128 s. [14] V.G. Kac, Verteksnye algebry dlja nachinajushhih, MCNMO, Moskva, 2005, 200 s. [15] L.E. Dickson, History of the Theory of Numbers. V. 2, Chelsea Pub. Co., New York, 1952. [16] J.V. Uspensky, M.A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company Inc., New York and London, 1939. [17] B.A. Venkov, Jelementarnaja teorija chisel, ONTI NKPT SSSR, Moskva, Leningrad, 1937, 222 s. [18] Kenneth S. Williams, Number theory in the spirit of Liouville. V. 76, London Mathematical Society Student Texts, Cambridge University Press, 2011. [19] V.A. Bykovskij, M.D. Monina, «Ob arifmeticheskoj prirode nekotoryh tozhdestv teorii jellipticheskih funkcij», Dal'nevost. matem. zhurn., 13:1 (2013), 15–34. |