Shrinkage of the hollow cylinder during heating |
Sevastyanov G.M. |
2015, issue 2, P. 264-276 |
Abstract |
Shrinkage of the outer surface of a hollow cylinder of a material with a positive coefficient of linear thermal expansion on heating can't be realized in the model of Duhamel - Neumann's thermoelasticity with constant elastic moduli. But it turns out that if elastic moduli are temperature dependent with uneven heating negative radial displacement of the outer cylindrical surface is possible. In this paper the exact analytical integration of the differential equations of thermoelastic equilibrium (Lame) for the long hollow cylinder, which is in under plane strain conditions, under certain restrictions on the coefficients and the right part, are carried out. Conditions for shrinkage on heating of cylinder and physically realizable example of such cylinder are given. |
Keywords: Duhamel - Neumann's thermoelasticity, Euler's hypergeometric differential equation, nonconstant elastic moduli, Heun's differential equation |
Download the article (PDF-file) |
References |
[1] Je. Kamkje, Spravochnik po obyknovennym differencial'nym uravnenijam, FIZMAT-GIZ, M., 1961. [2] G. Bejtmen, A. Jerdeji, Vysshie transcendentnye funkcii. Gipergeometricheskaja funkcija. Funkcii Lezhandra, Nauka, M., 1965. [3] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972. [4] A.A. Andreev, A.A. Kilbas, "O nekotoryh associirovannyh gipergeometricheskih funkcijah", Izvestija VUZov. Matematika, 271:12 (1984), 3-12. [5] A.D. Kovalenko, Osnovy termouprugosti, Naukova dumka, Kiev, 1970. [6] V.A. Kudinov, A. V. Erjomin, E. V. Kotova, "Poluchenie tochnyh analiticheskih reshenij zadach termouprugosti dlja mnogoslojnyh cilindricheskih konstrukcij", Vestnik SamGTU. Serija "Fiziko-matematicheskie nauki", 27:2 (2012), 188-191. [7] B.S. Lunin, S.N. Torbin, "O temperaturnoj zavisimosti modulja Junga chistyh kvarcevyh stekol", Vestnik Moskovskogo universiteta. Serija 2. Himija, 41:3 (2000), 172-173. [8] O.N. Ljubimova, E.A. Gridasova, K.N. Pestov, "K voprosu uprochnenija stekla metodom diffuzionnoj svarki s metallom", Vestnik ChGPU im. I.Ja. Jakovleva. Serija Mehanika predel'nogo sostojanija, 8:2 (2010), 318-325. [9] L.B. Potapova, V.P. Jarcev, Mehanika materialov pri slozhnom naprjazhennom sostojanii. Kak prognozirujut predel'nye naprjazhenija? Izdatel'stvo Mashinostroenie-1, M., 2005. [10] V.F. Zajcev, A.D. Poljanin, Spravochnik po obyknovennym differencial'nym uravnenijam, Nauka, M., 1995. [11] Je.T. Uitteker, Dzh.N. Vatson, Kurs sovremennogo analiza, FIZMATGIZ, M., 1963. [12] R.S. Maier, "The 192 solutions of the Heun equation", Mathematics of Computation, 76:258 (2007), 811-843. [13] G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, "Poisson's ratio and modern materials", Nature Materials, 986:10 (2011), 823-837. |