Far Eastern Mathematical Journal

To content of the issue


Criterion of square summability with geometric weight for Jacobi expansions


D. B. Karp

2000, issue 1, P. 16–27


Abstract
In this paper we prove that $\sum_{k=0}^{\infty}|f_k|^2\theta^k<\infty$, where $\theta>1$ and $f_k$ is the k-th Fourier coefficient of a function $f\in{L_1(-1,1;(1-x)^{\lambda}(1+x)^{\mu})}$ in orthonormal Jacobi polynomials, if $f$ can be analytically continued to the ellipse $E_{\theta}=\{z:~|z-1|+|z+1|<\theta^{\frac{1}{2}}+ \theta^{-\frac{1}{2}}\}$ and its analytic continuation belongs to the Szego? space $AL_2(\partial{E_{\theta}})$.

Keywords:

Download the article (PDF-file)

References

[1] N. Aronszajn, “Theory of reprodusing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404.
[2] G. Be'jtmen, A. E'rdeji, Vysshie transcendentnye funkcii, t. 1, Nauka, M., 1965.
[3] G. Be'jtmen, A. E'rdeji, Vysshie transcendentnye funkcii, t. 2, Nauka, M., 1966.
[4] D.-W. Byun, “Inversion of Hermite Semigroup”, Proc. Amer. Math. Soc., 118:2 (1993), 437–445.
[5] D. Karp, “Prostranstva analiticheskix funkcij s gipergeometricheskimi vosproizvodyashhimi yadrami i razlozheniya po ortogonal'nym polinomam”, Dal'nevostochnaya matematicheskaya shkola-seminar imeni akademika E. V. Zolotova, Vladivostok, 26 avgusta – 2 sentyabrya 1999 g., Tezisy dokladov, 1999, 42–44.
[6] D. Karp, A class of Holomorphic Pontryagin Spaces and Expansions in Orthogonal polinomials, arXiv: math.CV/9908129.
[7] H. Meschkowski, Hilbertsche Ra?ume mit Kernfunktion, Springer-Verlag, Berlin, 1962.
[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Special'nye funkcii, Nauka, M., 1983.
[9] S. Saitoh, Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, 189, Logman Scientific and Technical, London, 1988.
[10] S. Saitoh, Integral transforms, reproducing kernels and their applications, Pitman Research Notes in Mathematics Series, 369, Logman, Harlow, 1997.
[11] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funkcij kompleksnogo peremennogo, Nauka, M., 1964.
[12] G. Sege, Ortogonal'nye mnogochleny, GIFML, M., 1962.

To content of the issue